
Appendix
IB-security: First we show, in Figures 23 and 24, how ID-
and CP-difference can be trivially extended to partitioned
streams.

s1 6=l s2

s1 ::l S1 ∼̇l s2 ::l S2
(ID1)

s1 =l s2 S′1 ∼̇l S′2
s1 ::l S1 ∼̇l s2 ::l S2

(ID2)

sill(S2) fin(S2)

s ::l S1 ∼̇l S2
(∗) (ID3)

S1 ∼̇p
l S2

∗ ::l S1 ∼̇p
l S2

(∗) (ID4)

Figure 23: ID-difference of partitioned streams

s1 6=l s2

s1 ::l S1 '̇l s2 ::l S2
(CP1)

s1 =l s2 S′1 '̇l S′2
s1 ::l S1 '̇l s2 ::l S2

(CP2)

sill(S2)

s ::l S1 '̇l S2
(∗) (CP3)

S1 '̇p
l S2

∗ ::l S1 '̇p
l S2

(∗) (CP4)

Figure 24: CP-difference of partitioned streams

The proofs of the following lemmas are trivial.

Lemma A.1. S1
p
l ∼̇

p
l S2

p
l iff S1 ∼̇l S2.

Lemma A.2. S1
p
l '̇

p
l S2

p
l iff S1 '̇p

l S2.

For instance, to obtain a proof S1 ∼̇l S2 from a proof
of S1

p
l ∼̇

p
l S2

p
l , you simply remove each (ID4) node in

the derivation tree of S1 ∼̇l S2, and “glue” the tree back
together, that is, setting the child of the parent of the (ID4)
node, to the child of the (ID4) node.

We add labels to the rules defining IB-difference in Fig-
ure 25.

We are now ready to prove the propositions which posi-
tion IB-security between ID-security and CP-security.

Proposition 3.1. If q is IB-secure, then q is ID-secure.

Proof. Assume I1 ≈l I2, and thus (q(I1))p,lo ≈l (q(I2))p,lo .
We must show that then either I1 ∼̇l I2, or that (q(I1))o ∼l

(q(I2))o when I1 ∼l I2. Since ∼l and ≈l coincide on
finite streams, we have I1 ∼l I2, so we must show that
(q(I1))o ∼l (q(I2))o. Proving this amounts to proving

S1
p,l
o ≈l S2

p,l
o =⇒ S1o ∼l S2o

s1 6=l s2

s1 ::l S1 ≈̇k
l s2 ::l S2

(IB1)

S1 ≈̇0
l S2

∗ ::l S1 ≈̇k
l ∗ ::l S2

(IB2)

s1 =l s2 S1 ≈̇1
l S2

s1 ::l S1 ≈̇k
l s2 ::l S2

(IB3)

sill(S2) fin(S2)

s ::l S1 ≈̇0
l S2

(∗) (IB4)

sill(S2)

s ::l S1 ≈̇1
l S2

(∗) (IB5)

Figure 25: IB-difference of partitioned streams. ≈̇l
def
= ≈̇0

l

which you get from proving

¬(S1
p,l
o ≈̇0

l S2
p,l
o ) =⇒ ¬(S1o ∼̇l S2o)

which you get from proving

S1
p,l
o ≈̇0

l S2
p,l
o ⇐= S1o ∼̇l S2o

which you, by Lemma 7, get from proving

S1
p,l
o ≈̇0

l S2
p,l
o ⇐= S1

p,l
o ∼̇p

l S2
p,l
o .

We prove this last implication now. Let Oj = q(Ij)
p,l
o , and

assume (A) that O1 ∼̇p
l O2. We must show that O1 ≈̇l O2. We

do this by strong induction in the height k of the derivation
of O1 ∼̇p

l O2, to prove the stronger property O1 ≈̇0
l O2 ∧

O1 ≈̇1
l O2.

k = 1: Two cases.
(ID1): Here, k = 1. By (IB1), O1 ≈̇0

l O2 and O1 ≈̇1
l O2.

(ID3): Here, k = 1. By (IB4), O1 ≈̇0
l O2. By (IB5),

O1 ≈̇1
l O2.

k + 1, given ≤ k: (IH) =“O′1 ∼̇p
l O′2 =⇒ O′1 ≈̇0

l O′2 ∧
O′1 ≈̇1

l O′2, for all O1, O2 with O′1 ∼̇p
l O′2 derivation≤ k”

is our induction hypothesis.
(ID2): By (IB3), (A), (IH), O1 ≈̇0

l O2 and O1 ≈̇1
l O2.

(ID4): Assume wlg. that O1 � ∗ :: O′1. Case on O2.
O2 ≡ []: By (IB4), O1 ≈̇0

l O2. By (IB5), O1 ≈̇1
l O2.

O2 � o :: O′2: By (IB1), O1 ≈̇0
l O2. By (IB1), O1 ≈̇1

l O2.
O2 � ∗ :: O′2: By (IB2), (A), (IH), O1 ≈̇0

l O2 and
O1 ≈̇1

l O2.

Proposition 3.2. If q is CP-secure, then q is IB-secure.

Proof. Strategy is the same as in the above proposition.



Quantitative Guarantee: First we need to establish a
lemma stating that when reacting to unobservable messages,
no observables are emitted. The proof uses concatenated
streams, which we re-interpret as streams in Figure 26.

−
[](s :: S2) � s :: S2

−
(s :: S1)S2 � s :: (S1S2)

Figure 26: Concatenation of streams

Lemma A.3. If q is IB-secure, then for any l, we have for
each i with ¬obsl(i) in any I , if q finishes handling i while
running on I , then for any o produced while handling i,
¬obsl(o) holds.

Proof. Assume the opposite. You can construct I1 = II ′

and I2 = I[i]I ′ such that I1!
l ≈l I2

!
l but q(I1) ≈̇l q(I2),

meaning q is not IB-secure, a contradiction.

Theorem 3.1. If q is IB-secure, then q is at most log2(n+1)-
bit secure, where n is the nr. of observables in q’s input.

Proof. From Lemma A.3, we get that (∗) q never produces
observables when handling a message i in a high part of its
input I , whether q terminates on i or not (the latter follows
from the assumption that q is IB-secure). We proceed by
induction in n, the number of observables in I .

n = 0: By (∗) there is only one equivalence class for outputs
for the case where nothing is observed. Thus q is log2(1)-
bit secure, as desired.

n+ 1, given the theorem holds for n: We have for any I
with n + 1 l-observables that for some IH and iL, I =
I ′[iL]IH . I ′ has n observables. If q diverges on iL, the
observer cannot know whether the program really di-
verged on iL or the last high part in I ′. Also, if q termi-
nates on iL, by (∗), it makes no difference to the number
of equivalence classes whether q terminates or diverges
on IH . So, there is only 1 more equivalence class, repre-
senting that q finished handling iL. By induction hypoth-
esis, the greatest number of equivalence classes for I ′ is
n + 1. This totals to n + 2 equivalence classes. So q is
log2(n+ 2)-bit secure for I .

We are done.

Buffering Improves Security: Let S1 ∼p
l S2

def
= ¬(S1 ∼̇p

l S2).
By Lemma A.1, S1 ∼l S2 ⇐⇒ S1

p
l ∼

p
l S2

p
l .

Theorem 3.2. If q is ID-secure, then qB is IB-secure.

Proof. Let I1 ∼l I2. Then I1 ≈l I2 as ∼l and ≈l

coincide on finite streams. Also, (q(I1))o ∼l (q(I2))o by
the definition of ID-security. We show that

(q(I1))p,lo ∼p
l (q(I2))p,lo =⇒ (q(I1))p,lo ≈l (q(I2))p,lo .

Let Ij = Ipj1 · · · I
p
jn+1

and Ikj = Ipj1 · · · I
p
jk

. I1 and I2 must
have the same number of observables; otherwise I1 ∼l I2
cannot hold. Let n be the number of observables in I1 and
I2. I1 and I2 will therefore both have n + 1 phases. Ipj n+1

both contain only unobservables, while Ipj k have an ob-
servable as last element, and all other elements unobserv-
able. So, Ik1 ∼l I

k
2 ; otherwise I1 ∼l I2 cannot hold. So

(q(Ik1 ))p,lo ∼p
l (q(Ik2 ))p,lo by the definition of ID-security. If

q(Ik1 ) both terminate, then q(Ik1 ) will be finite streams. Then
(q(Ik1 ))p,lo ≈l (q(Ik2 ))p,lo since∼l and ≈l coincide on finite
streams.

If q(Ij) is diverging, then the divergence occurs in some
phase. Assume wlg. that q(I1) diverges (and if q(I2) also
diverges, that q(I1) diverges after consuming at most as
many inputs as q(I2)). Let k be smallest such that q(Ik1 )
diverges. By a corresponding Lemma A.3 for ID-security
(which proof is near-identical), q(Ik1 ) outputs no observables
when handling the unobservable inputs in I1

p
k, provided

q(Ik1 ) terminates while doing so. Eventually, q(Ik1 ) diverges
while handling some i where I1

p
k = I[i]I ′. Regardless of

whether i is observable or not, the outputs emitted while
q(Ik1 ) reacts to i are buffered, so q(Ik1 ) remains silent for
the rest of I1

p
k. Since q(Ik1 ) reacted silently to I as well, all

of I1
p
k is reacted to silently. This rules out all rules for distin-

guishing (q(Ij))
p,l
o by ≈̇l . So (q(I1))p,lo ≈l (q(I2))p,lo .

Type Soundness: Let a range over I = Ce∪Cc, lble(ch) =
lbl(che), lblc(ch) = lbl(chc) and lblΓ(a) =

⊔
a′∈Γ(a) lbl(a′).

Definition A.4. lbl is consistent with Γ, written ct(Γ), iff
lblΓ(a) v lbl(a), ∀a.

Definition A.5. p is well-typed, written ` p, iff Γ ` p and
ct(Γ), for some Γ.

Theorem 5.1. If ` p, then p is ID-secure.

Theorem 5.1 is the type soundness theorem we wish to
prove. The proof relies on the following auxiliary defini-
tions.

Definition A.6. lbl is consistent with the typing of c under Γ
and pc, written ct(c,Γ, pc), iff, pc ` Γ · {c} p Γ (for some
p) and ct(Γ).

Definition A.7. µ1 and µ2 l-agree on x under Γ, written
µ1 =Γ

l,x µ2, iff, lblΓ(x) v l =⇒ µ1(x) = µ2(x).

Definition A.8. µ1 and µ2 are l-equivalent under Γ, written
µ1 =Γ

l µ2, iff, µ1 =Γ
l,x µ2, ∀x.

Definition A.9. c is secure under Γ and pc, written sc(c,Γ, pc),
iff, for all l,

i) If lpc v l, then for all µ1, µ2, if µ1 =Γ
l µ2, then

a) (µ1, c) ∼l (µ2, c) and
b) if (µ1, c) ⇓ µ′1 and (µ2, c) ⇓ µ′2 then µ′1 =Γ

l µ
′
2.

ii) If lpc 6v l, then for all µ,
a) sill((µ, c)) and
b) if (µ, c) ⇓ µ′, then µ =Γ

l µ
′.



where pc ` Γ · {c} p Γ′ (for some ∆) and lpc = lblΓ(pc).

Here, (µ, c) is the run of c in µ (defined in the obvious
way). We write (µ, c) ⇓ µ′ when (µ, c)

O−→∗ (µ′, skip). µ
does not represent the full system state; for that we would
also need a p that gets updated when new . . . statements
in c are executed. However, Definition A.9 only concerns
outputs emitted and changes on µ during a (µ, c) run, that is,
a single handler execution. So we omit p in these runs.

For concatenated streams, the following useful lemma
holds.

Lemma A.10. S1 ∼l S2 ∧ S′1 ∼l S
′
2 =⇒ S1S

′
1 ∼l S2S

′
2.

We are ready to prove the key lemma used in the proof of
Theorem 5.1.

Lemma A.11. For all c, Γ, pc, ct(c,Γ, pc) =⇒ sc(c,Γ, pc).

Proof. Assume ct(c,Γ, pc). Let

pc ` Γ · {c} p Γ (µ, c) ⇓ µ′

Γ ` e : T (µi, c) ⇓ µ′i
lpc = lblΓ(pc)

We prove, by induction in c, that sc(c,Γ, pc) must then hold.

Base cases

c
def
= skip: sill((µi, c)), thus (µ1, c) ∼l (µ2, c), and sill((µ, c)),
for all l. Also, µ′ = µ and µ′i = µi. So sc(c,Γ, pc) is a
tautology.

c
def
= x := e: sill((µi, c)), thus (µ1, c) ∼l (µ2, c), and sill((µ, c)),
for all l. Also, µ′ = µ[x 7→ v] and µ′i = µi[x 7→ vi],
where µ ` e ⇓ v and µi ` e ⇓ vi. There are two cases to
consider.
lblΓ(x) 6v l: Then µ′ =Γ

l µ and µ′i =Γ
l µi. By transitivity,

µ′1 =Γ
l µ
′
2. So sc(c,Γ, pc) holds in this case.

lblΓ(x) v l: Then lblΓ(T t pc) v l. Thus lblΓ(pc) v l
and lpc v l (so µ =Γ

l µ′ is not required). Also,
lblΓ(T ) v l, and therefore lblΓ(x′) v l, ∀x′ ∈
T . Thus v1 = v2, and therefore, µ′1 =Γ

l µ′2. So
sc(c,Γ, pc) holds in this case.

c
def
= out ch(e): Then µ′ =Γ

l µ and µ′i =Γ
l µi. By transi-

tivity, µ′1 =Γ
l µ
′
2. There are three cases to consider.

lble(ch) 6v l: Then sill((µi, c)), thus (µ1, c) ∼l (µ2, c),
and sill((µ, c)). So sc(c,Γ, pc) holds in this case re-
gardless of whether lpc v l or not.

To prove the other two cases we need to show that
lblΓ(pc) v lble(ch). We have pc ⊆ Γ(che) by the type
rule for output and the weakening rule. Now assume
lblΓ(pc) 6v lble(ch). Then, for some a, a ∈ Γ(che) and
lbl(a) 6v lble(ch). But this contradicts our ct(c,Γ, pc)
assumption. Likewise we have pc ∪ T ⊆ Γ(chc) and, by
the same argument, lblΓ(pc ∪ T ) v lblc(ch).
lble(ch) v l, lblc(ch) 6v l: lblΓ(pc) v l by transitiv-

ity of v. Recall that lpc = lblΓ(pc). Since lpc v

l, (µ1, c) ∼l (µ2, c) must hold for sc(c,Γ, pc) to
hold. Indeed, we have (µi, c) � (oi, (µi, skip)) and
obsl(o1) = obsl(o2) = ch(·). So (µ1, c) ∼l (µ2, c),
and therefore sc(c,Γ, pc) holds in this case.

lblc(ch) v l: Again, lpc v l. Also, lblΓ(T ∪ pc) v l
by similar argument, and thus lblΓ(T ) v l. Then
lblΓ(x′) v l, ∀x′ ∈ T . Thus v1 = v2, where µi ` e ⇓
vi, so o1 = o2, where (µi, c) � (oi, (µi, skip)). Thus
(µ1, c) ∼l (µ2, c), and therefore, sc(c,Γ, pc) holds in
this case.

c
def
= new ha: As we here only care about output emitions
and µ updates, the proof for this case becomes the same
as that of the c def

= skip case.

Inductive step Induction hypothesis (IH): “for any cj
structurally smaller than c, then for any Γj and pcj , ct(cj ,Γj , pcj) =⇒
sc(cj ,Γj , pcj)”. Let

pcj ` Γj {cj} pj Γj (µj , cj) ⇓ µ′j
lpcj = lblΓ(pcj) (µij , cj) ⇓ µ′ij ,

where cj is structurally smaller than c. Then, for instance, if
ct(cj ,Γj , pcj), then µ1j

=
Γj

l µ2j
=⇒ µ′1j

=
Γj

l µ′2j
by IH

since sc(cj ,Γj , pcj) holds.

c
def
= if e {c1} {c2}: Let Γj = Γ and pcj = pc ∪ T . Then,
by the ct(c,Γ, pc) assumption, ct(Γ), and thus ct(Γj).
Since c is well-typed, pcj ` Γj · {cj} pj Γj (for some
pj). So ct(cj ,Γj , pcj), and thus sc(cj ,Γj , pcj) by IH.
Here, p = p1p2. It remains to be shown that sc(c,Γ, pc).
Now, (µi, c) either take
i) different branches, or

ii) the same branch,
in c. There are two cases to consider.
lblΓ(T ) 6v l: Then lpcj 6v l. Either i) or ii). We consider

each case in turn.
i): Assume wlg. that (µj , c) takes branch j, executing
cj . Then µj = µjj . For all x, if x is assigned to in
(µj , c), then lblΓj

(x) 6v l since T ⊆ Γj(x). Then
T ⊆ Γj(x) since Γj = Γ. Thus lblΓ(x) 6v l and
therefore µj =Γ

l,x µ
′
j . By transitivity, µ′1 =Γ

l µ
′
2.

ii): Here, µi = µij and µ′i = µ′ij where j is the
branch taken in both runs. Since sc(cj ,Γj , pcj)
and lpc v lpcj , µ′1 =Γ

l µ
′
2.

In both cases, since sc(cj ,Γj , pcj) and lpcj 6v l,
sill((µj , c)). So sc(c,Γ, pc).

lblΓ(T ) v l: Then lpcj v l. Thus µ1(e) = µ2(e).
i): Impossible.
ii): Same argument as in case lblΓ(T ) 6v l.
Since sc(cj ,Γj , pcj), pcj = pc ∪ T , and since (µ1, c)
and (µ2, c) take the same branch, (µ1, c) ∼l (µ2, c).
So sc(c,Γ, pc).

c
def
= c1; c2: Let Γj = Γ and pcj = pc. Like in the
if . . . case, since ct(c,Γ, pc), ct(cj ,Γj , pcj), and



thus sc(cj ,Γj , pcj) by IH. It remains to be shown that
sc(c,Γ, pc). Since sc(cj ,Γj , pcj), by setting µi = µ1i

,
µ2i

= µ′1i
and µ′i = µ′2i

we have µ1 =Γ
l µ2 =⇒

µ′1 =Γ
l µ′2, if (µ1i

, c1) ⇓ µ′1i
and (µ2i

, c2) ⇓ µ′2i
, as

then (µi, c1; c2) ⇓ µ′i. We get (µ1, c) ∼l (µ2, c) by
sc(cj ,Γj , pcj), the fact that all silent streams are equiva-
lent under ∼l, and by Lemma A.10.

c
def
= while e {c1}: Let Γ1 = Γ and pc1 = pc ∪ T . Like in
the if . . . case, since ct(c,Γ, pc), ct(cj ,Γj , pcj), and
thus sc(cj ,Γj , pcj) by IH. It remains to be shown that
sc(c,Γ, pc). There are two cases to consider.
lblΓ(T ) 6v l: Then lpc1 6v l. Since sc(c1,Γ1, pc1), sill((µi, c1)),

and thus sill((µi, c)), for any µi. Likewise, by transi-
tivity of =Γ

l , if (µi, c) ⇓ µ′i and µ1 =Γ
l µ2, then

µ′1 =Γ
l µ
′
2.

lblΓ(T ) v l: Let µn
i be µi after n iterations of c1. So

µ0
i = µi and (µn

i , c1) ⇓ µn+1
i . Since sc(cj ,Γj , pcj),

if µ1 =Γ
l µ2, then (µn

1 , c) ∼l (µn
2 , c) and µn+1

1 =Γ
l

µn+1
2 , for all n, up to k (possibly nonexisting), where

one of two things happens:
µk
i (e) = 0; µk

i defined: Then µ′i = µk
i , µ′1 =Γ

l µ′2,
(µi, c) = (µ0

i , c1) · · · (µk−1
i , c1), and (µ1, c) ∼l

(µ2, c).
µk

2 undefined: Then (µk−1
2 , c1) diverged (so no con-

straints are placed on memories for establishing
sc(c,Γ, pc)). Still, (µk−1

1 , c1) ∼l (µk−1
2 , c1). Now,

Lemma 7 can be used to prove that if S ∼l S
∞

and S∞ is infinite, then for any S′, SS′ ∼l S
∞.

From this it follows that (µ1, c) ∼l (µ2, c), where
(µ1, c) = (µ0

1, c1) · · · (µk
1 , c1) · · · and (µ2, c) =

(µ0
2, c1) · · · (µk−1

2 , c1).
Thus sc(c,Γ, pc).

Obtain a list

〈pc′1, ch1, c1〉; · · · ;〈pc′n, chn, cn〉; · def
= ∆̂

when typing p by adding a side-effect ∆̂ := 〈pc, ch, c〉∆̂
as a premise in the third rule in Figure 21. Let hai =
chi(z){ci}. Each hai is then a possibly active handler,
and pci is the context in which hai was activated in. Let
Γi = Γ[z 7→ čh

c
] and pci = pc′i t čh

e
.

Lemma A.12. If ` p, then ct(ci,Γi, pci), ∀i.

Proof. Since ` p, by typing, pci ` Γi {ci} pi Γi (for some
pi), ∀i. Also, ct(Γ) =⇒ ct(Γi) since Γi = Γ[z 7→ čh

c
] and

z 6∈ I.

Lemma A.13. If sc(ci,Γi, pci), ∀i, then p is ID-secure.

Proof. Let I1, I2 and l s.t. I1 ∼l I2 be given. Let O1 =
(q0(I1))o and O2 = (q0(I2))o. We show that O1 ∼l O2.
Let µj denote the current memory of Oj (initially µ0). So

initially µ1 =Γ
l µ2. As Oj processes unobservables, Oj

remains silent by Definition A.9 ii). Also, all µj are l-
equivalent under Γ. If either Oj diverges when handling
an unobservable, we are done. Otherwise Oj both eventu-
ally start processing observables ij . obsl(i1) = obsl(i2) =
ch(w) for some ch and w ∈ V∪ {·}, since I1 ∼l I2. At that
time, µ1 =Γ

l µ2. So by Definition A.9 i), O1 ∼l O2 while
handling i1 and i2, and if O1 and O2 finish doing so, the re-
sulting µ1, µ2 satisfy µ1 =Γ

l µ2, and this argument repeats
for the rest of the input streams, until one diverges, or they
are both exhausted. Thus O1 ∼l O2.

Theorem 5.1 now follows from Lemmas A.11, A.12 and
A.13.

Theorem 5.2. If p is ID-secure, then buff(p) is IB-secure.

Proof. Let I1 ∼l I2. Then q0(I1) ∼l q0(I2) by assumption.
Let Ij = Ipj1 · · · I

p
jn+1

and Ikj = Ipj1 · · · I
p
jk

. Then q0(Ik1 ) ∼l

q0(Ik2 ), ∀1 ≤ k ≤ n + 1 (else we get a contradiction since
I1m

∼l I1m
, for all m). In particular, if C0 terminates on

Ik1 and Ik2 , then C0(Ik1 ) and C0(Ik2 ) will match observables
exactly. Thus C0(I1) ≈l C0(I1). Since buff(p) has the
same input-output behavior in this case, buff(p) is IB-secure
for those inputs.

Nonterminating reactions are yet to be considered. Since
p is ID-secure, by a corresponding Lemma A.3 for ID-
security (which proof is near-identical), we have that p never
produces observables when handling a message i in a high
part of the input stream, when p terminates on i. Same holds
for buff(p). If p diverges on some i, then buff(p) outputs
nothing while diverging on i. Thus, if buff(p) diverges on a
part, high or low, no outputs emerge. We are done.


