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APPENDIX

Let ◦ denote a non-• result. Let C = dom(τ).

Must-Analysis
Lemma A.1. For all Γ1, Γ2, if `dep Γ1 and `dep Γ2, then `dep Γ1 � Γ2.

Proof: Assume the opposite. Then, for some C ′ and C, C ′ ∈ dep(C), Γ(C) = I, and Γ(C ′) = •, where Γ = Γ1 � Γ2. By
definition of �, Γ1(C) = Γ2(C) = I. But then, since `dep Γj , Γj(C

′′) = I for all C ′′ ∈ dep(C). Therefore Γ(C ′′) = I for all
C ′′ ∈ dep(C) (including in particular C ′) by definition of �, a contradiction.

Lemma 7.3 (dep-consistency preservation) For all Γ, Γ′, t, pc and `′, if
i) pc ` Γ {t}Γ′ : `′

ii) `dep Γ

then
iii) `dep Γ′,
iv) ∀C .C ∈ dep(t) =⇒ Γ′s(C) = I, if t = a for some a
v) ∀C . Γ′s(C) 6= Γs(C) =⇒ C ∈ dep(t), if t = a for some a

holds.
Proof for a: By mutual induction in the height j of the typing derivation of each of e, c and i.

Base e: Two cases to consider.
(NUM`) : Then e = n for some n.

Γ′ = Γ, so iii) holds.
dep(n) = ∅, so iv) and v) hold.

(VAR`) : Same argument as in (NUM`) case.
Base c: Two cases to consider.

(INIT-T`) : Then e = C {i} = τ(C).
Γ′ = Γ, so iii) holds.
From ii) and Γ(C) = I, we get that iv) and v) hold.

(INIT-S-T`) : Same argument as in (INIT-T`) case.
Base i: No case to consider.
We now assume Lemma 7.3 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.3 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Three cases to consider.

(FIELD`) : Then e = C.x for some C.x.
By i), pc ` Γ {τ(C)}Γ′ : `′.
By (IH), iii) holds.
Also, dep(C.x) = dep(τ(C)).
So by (IH), iv) and v) holds.

(OP-T`) : Then e = e1 ⊕T e2 for some e1, e2 and operator ⊕T.
With `′ = `1 t `2, by i), pc ` Γ {e1}Γ1 : `1.
By (IH), `dep Γ1 holds.
By i), pc ` Γ1 {e2}Γ′ : `2.
By (IH), `dep Γ′ holds.
So iii) holds.
By (IH), ∀C ∈ dep(e1) . Γ1(C) = I.
Also by (IH), ∀C . Γ1

s(C) 6= Γs(C) =⇒ C ∈ dep(e1).
From Lemma 7.2, we get ∀C ∈ dep(e1) . Γ′(C) = I.
By (IH), ∀C ∈ dep(e2) . Γ1(C) = I.
Also by (IH), ∀C . Γ′s(C) 6= Γ1

s(C) =⇒ C ∈ dep(e2).
Since dep(e) = dep(e1) ∪ dep(e2), iv) and v) hold.

(OP-P`) : Near-identical argument as in (OP-T`) case.
Inductive step c: Three cases to consider.

(INIT-F`) : Then c = C {i} = τ(C).
By i), pc t Γc(C) t Γe(C) ` Γ[C 7→s B] {i}Γ′[C 7→s B] : `i, where `′ = `i t Γ′′[C 7→s B].
Here, Γ′ = Γ′′[C 7→ 〈I, pc, `i〉].
By (IH), `dep Γ′′[C 7→s B].
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Also by (IH), ∀Ĉ ∈ dep(i) . Γ′′[C 7→s B](Ĉ) = I.
Also by (IH), ∀C . Γ′′[C 7→s B]

s
(C) 6= Γ[C 7→s B] =⇒ C ∈ dep(i).

By the definition of Γ′, iii), iv) and v) hold.
(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek.

By i),
⊔q−1

p=1 `p t pc ` Γq−1 {eq}Γq : `q for all q from 1 to k.
Induction in k.
Base: Here, k = 0, so i = skip.

iii), iv) and v) follow since Γ′ = Γ and dep(i) = ∅.
Inductive step: Assume Lemma 7.3 holds for k ≤ m. This is our induction hypothesis (IH)k. We must show

that Lemma 7.3 holds for k = m+ 1.
By (IH)k, `dep Γm.
Now, Γm+1 = Γ′.
By (IH), `dep Γ′. So iii) holds.
By (IH)k, ∀Ĉ ∈ dep(C.x1 := e1; . . . ;C.xk := ek) . Γm

s(Ĉ) = I.
Also, ∀Ĉ . Γm[C 7→s B]

s
(Ĉ) 6= Γ[C 7→s B]

s
(Ĉ) =⇒

C ∈ dep(C.x1 := e1; . . . ;C.xk := ek).
By (IH), ∀Ĉ ∈ dep(em+1) . Γm+1

s(Ĉ) = I.
Also, ∀Ĉ . Γm+1[C 7→s B]

s
(Ĉ) 6= Γm[C 7→s B]

s
(Ĉ) =⇒

C ∈ dep(em+1). . . ;C.xk := ek.
Since dep(i) = dep(C.x1 := e1; . . . ;C.xk := ek) ∪ dep(C.xm+1 := em+1), dep(C.xm+1 := em+1) = dep(em+1),
and Γm v Γm+1, iv) and v) follow from (IH).

Proof sketch for s: As for a, the proof for s is by induction in the height j of the typing derivation of s. For s,
all we need in the future is to be certain that invariant `dep Γ is preserved as the type system threads Γ through
statements, that is, that iii) holds. The definition of dep(·) could be extended to a homomorphism on s, in which case
v) would hold for s. However, iv) will not hold for s, as evidenced for instance by if h then C.x := 0 else skip;
this s depends on C, but C is not necessarily initialized after a successful run of s. The cultprit is the � operator
— the only means by which Γ changes in the statement typing rules. Thus, the (IF`), (TRY`) and (WHILE`), the
only rules using the � operator, constitute the only interesting cases in this proof. As the semantics and typing of
while statements can be viewed as a combination of sequential composition and if statements, the interesting
cases become the (IF`), (TRY`) and (SEQ`) rules, which we prove here.

Assume Lemma 7.3 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We
must show that Lemma 7.3 holds for s with typing derivation height n+ 1.

Inductive step: Three (interesting) cases to consider.
(SEQ`): Then s = s1; s2, for some s1 and s2.

By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ1 {s2}Γ′ : `2, where `′ = `1 t `2.
By (IH), `dep Γ1.
Again by (IH), `dep Γ′.
So iii) holds.

(IF`): Then s = if e then s1 else s2, for some e, s1 and s2.
By i), pc ` Γ {e} Γ̂ : ˆ̀, pc t ˆ̀t lvl(e) ` Γ̂ {s1}Γ1 : `1 and pc t ˆ̀t lvl(e) ` Γ̂ {s2}Γ2 : `2, where `′ = `1 t `2 and
Γ′ = Γ1 � Γ2.
By Lemma 7.3 for a, `dep Γ̂.
By (IH), `dep Γ1 and `dep Γ2.
By Lemma A.1, `dep Γ′.
So iii) holds.

(TRY`): Then s = try s1 catch s2, for some s1 and s2.
By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ� Γ1 {s2}Γ2 : `2, where `′ = `2 and Γ′ = Γ1 � Γ2.
By (IH), `dep Γ1.
By Lemma A.1, `dep Γ� Γ1.
By (IH), `dep Γ2.
By Lemma A.1, `dep Γ1 � Γ2.
So iii) holds.
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It is easy to see, by investigating the type resp. semantics rules that introduce and eliminate a C 7→ B into Γs

resp. σ, that the following two lemmas hold.

Lemma A.2. For all Γ, Γ′, t, if ` Γ {t}Γ′ : , then for all C, Γs(C) = B ⇐⇒ Γ′s(C) = B.

Lemma A.3. For all σ, σ′, t, if 〈σ, t〉 ⇒ 〈σ′, 〉, then for all C, σ(C) = B ⇐⇒ σ′(C) = B.

Lemma 7.4 (agreement preservation) For all Γ, Γ′, t, pc and `′, if
i) pc ` Γ {t}Γ′ : `′

ii) `dep Γ, `dep σ, Γ |=dep σ
iii) 〈σ, t〉 ⇒ 〈σ′, R〉
then
iv) `dep σ′
v) R 6= • =⇒ Γ′ |=dep σ

′

holds.
Proof for a: By mutual induction in the height j of the typing derivation of each of e, c and i.

Base e: Two cases to consider.
(NUM`) : Then e = n for some n.

Only (NUM⇒) can establish iii).
By this rule, σ′ = σ.
So iv) holds.
By (NUM`), Γ′ = Γ.
By ii), Γ′ |=dep σ

′.
So v) holds.

(VAR`) : Same argument as in (NUM`) case.
Base c: Two cases to consider.

(INIT-T`) : Then e = C {i} = τ(C).
By (INIT-T`), Γ′ = Γ.
By ii) and since Γ(C) = I, only (INIT-T⇒) can conclude iii).
(INIT-T⇒) gives σ′ = σ.
So iv) holds.
By ii), Γ′ |=dep σ

′.
So v) holds.

(INIT-S-T`) : Same argument as in (INIT-T`) case.
Base i: No cases to consider.
We now assume Lemma 7.4 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.4 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Three cases to consider.

(FIELD`) : Then e = C.x for some field C.x.
Let 〈σ, τ(C)〉 ⇒ 〈σ′, I〉.
By i), pc ` Γ {τ(C)}Γ′ : `′.
Case on I .
I = •: Then (FIELD-E⇒) was used to establish iii).

By (FIELD-E⇒), R = •.
So v) holds vacuously.
By (IH), `dep σ′.
So iv) holds.

I = I: Then (FIELD-OK⇒) was used to establish iii).
By (FIELD-OK⇒), R = σ′(C.x).
By (IH), `dep σ′ and Γ′ |=dep σ

′.
So iv) and v) hold.

(OP-T`) : Then e = e1 ⊕ e2 for some ei and some total operator ⊕.
By i) we have pc ` Γ {e1}Γ1 : `1 and pc ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where `′ = `1 t `2.
Case on the rule used to establish iii).
(OP-EL⇒): Then 〈σ, e1〉 ⇒ 〈σ′, •〉.

Since R = •, v) holds vacuously.
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By (IH), v) holds.
(OP-ER⇒): Then 〈σ, e1〉 ⇒ 〈σ1, n1〉 and 〈σ1, e2〉 ⇒ 〈σ′, •〉.

Since R = •, v) holds vacuously.
By Lemma 7.3 and by (IH), `dep Γ1, `dep σ1 and Γ1 |=dep σ1.
By (IH), iv) holds.

(OP-OK⇒): Then 〈σ, e1〉 ⇒ 〈σ1, n1〉 and 〈σ1, e2〉 ⇒ 〈σ′, n2〉, where n = n1 ⊕ n2.
By Lemma 7.3 and by (IH), `dep Γ1, `dep σ1 and Γ1 |=dep σ1.
By (IH), iv) and v) holds.

(OP-P`) : Then e = e1 ⊕ e2 for some ei and some partial operator ⊕. Case on the rule used to establish iii).
All cases and proofs thereof are the same as for the (OP-T`) case, except that (OP-P`) has the following
additional case:
(OP-EP⇒): As the proof of the (OP-OK⇒) case, except v) holds vacuously.

Inductive step c: Three cases to consider.
(INIT-F`) : Then c = C {i} for some C and i.

Also, Γ(C) = U.
By i) we have pc t Γe(C) ` Γ[C 7→s B] {i}Γ′′ : `C ,
where Γ′ = Γ′′[C 7→s I, C 7→e `C ] and `′ = `C t Γ′′e(C).
Case on the rule used to establish iii).
(INIT-A⇒) : Then 〈σ, c〉 ⇒ 〈σ′, σ(C)〉, with σ′ = σ.

So iv) holds.
Case on σ(C).
σ(C) = • : But then 〈σ, c〉 ⇒ 〈σ′, •〉, so v) holds vacuously.
σ(C) = B : But Γ(C) = U, contradicting Γ |=dep σ, and thus ii).
σ(C) = I : From `dep σ, we have ∀Ĉ ∈ dep(C) .σ(Ĉ) = I.

By Lemma 7.3,
we have ∀Ĉ . Ĉ ∈ dep(C) =⇒ Γ′s(Ĉ) = I
and ∀Ĉ . Γ′s(Ĉ) 6= Γs(Ĉ) =⇒ Ĉ ∈ dep(C).
This, together with Γ |=dep σ, gives Γ′ |=dep σ. Since σ′ = σ, v) holds.

(INIT-U⇒) : Let 〈σ[C 7→ B], i〉 ⇒ 〈σ′′, T 〉, where σ′ = σ′′[C 7→ I(T )].
We have `dep σ[C 7→ B], `dep Γ[C 7→s B] and Γ[C 7→s B] |=dep σ[C 7→ B].
By (IH), `dep σ′′, and T 6= • =⇒ Γ′′ |=dep σ

′′.
By Lemma 7.3,
we have ∀Ĉ . Ĉ ∈ dep(i) =⇒ Γ′′s(Ĉ) = I
and ∀Ĉ . Γ′′s(Ĉ) 6= Γs(Ĉ) =⇒ Ĉ ∈ dep(i).
From the definition of Γ′ and σ′,
and from dep(c) = dep(i) ∪ {C}.
iv) and v) follow.

(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek. Induction in k.

Base: Here, k = 0. Then i = skip.
By (INIT`), Γ′ = Γ.
Only (SKIP⇒) can conclude iii).
(SKIP⇒) gives σ′ = σ. So iv) holds.
By ii), Γ′ |=dep σ

′.
So v) holds.

Inductive step: Assume Lemma 7.4 holds for k ≤ m. This is our induction hypothesis (IH)k. We must show
that Lemma 7.4 holds for k = m+ 1.
By assumption i),
we get that

⊔q−1
p=1 `p t pc ` Γq−1 {eq}Γq : `q ,

for all q from 1 to m+ 1.
By Lemma 7.3, `dep Γm.
Let 〈σ,C.x1 := e1; . . . ;C.xm := em〉 ⇒ 〈σm, Tm〉.
By (IH)k, `dep σm and Tm 6= • =⇒ Γm |=dep σm.
Case on the rule used to establish iii).
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(SEQ-E⇒) : Then R = Tm = • and σ′ = σm.
So v) holds vacuously, and iv) holds.

(SEQ-OK⇒) : Then Tm = skip,
and 〈σm, C.xm+1 := em+1〉 ⇒ 〈σ′, R〉. (*)
Two candidate rules for establishing (*); (E-E⇒) and (FIELD-A-OK⇒).
Both rules start by evaluating em+1 under σm.
Let 〈σm, em+1〉 ⇒ 〈σm+1, Vm+1〉.
By (IH), `dep σm+1 and Vm+1 6= • =⇒ Γm+1 |=dep σm+1.
Case on Vm+1.
Vm+1 = •: Then (E-E⇒) was used to establish (*).

By (E-E⇒), σ′ = σm+1, and R = •.
So v) holds vacuously, and iv) holds.

Vm+1 = nm+1: Then (FIELD-A-OK⇒) was used to establish (*).
By (FIELD-A-OK⇒), σ′ = σm+1[C.xm+1 7→ nm+1] and R = skip.
Since σm+1 and σ′ do not differ in class initialization statues,
and since Γ′ = Γm+1,
`dep σ′ and Γ′ |=dep σ

′.
So v) and iv) hold.

Proof sketch for s: As for a, the proof for s is by induction in the height j of the typing derivation of s. As in
Lemma 7.3, we prove only the interesting cases.

Assume Lemma 7.4 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We
must show that Lemma 7.4 holds for s with typing derivation height n+ 1.

Inductive step: Three (interesting) cases to consider.
(SEQ`): Then s = s1; s2, for some s1 and s2.

By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ1 {s2}Γ′ : `2, where `′ = `1 t `2.
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), `dep σ1 and T1 6= • =⇒ Γ1 |=dep σ1.
Case on T1.
T1 = •: Then σ′ = σ1 and R = •.

So v) holds vacuously, and iv) holds.
T2 = skip: Then 〈σ1, s2〉 ⇒ 〈σ′, R〉.

By Lemma 7.3, `dep Γ1.
By (IH), `dep σ′ and R 6= • =⇒ Γ′ |=dep σ

′.
So v) and iv) hold.

(IF`): Then s = if e then s1 else s2, for some e, s1 and s2.
By i), pc ` Γ {e} Γ̂ : ˆ̀, pc t ˆ̀t lvl(e) ` Γ̂ {s1}Γ1 : `1 and pc t ˆ̀t lvl(e) ` Γ̂ {s2}Γ2 : `2, where `′ = `1 t `2 and
Γ′ = Γ1 � Γ2.
Let 〈σ, e〉 ⇒ 〈σe, V 〉.
By Lemma 7.4 for a, `dep σe and Γ̂ |=dep σe.
Case on V .
V = •: Then σ′ = σe and R = •.

So v) holds vacuously, and iv) holds.
V = n: Assume n = 0 (argument for n = 0̄ near-identical).

Then 〈σe, s2〉 ⇒ 〈σ′, R〉.
By (IH), `dep σ′ and R 6= • =⇒ Γ2 |=dep σ

′. (*)
So iv) holds.
It remains to be shown that R 6= • =⇒ Γ1 � Γ2 |=dep σ

′.
By Lemma A.2, we get that Γ̂s(C) = B ⇐⇒ Γj

s(C) = B.
Thus, by transitivity of “⇐⇒ ”, Γ1

s(C) = B ⇐⇒ Γ2
s(C) = B, for all C.

By definition of �, Γ2
s(C) = B ⇐⇒ Γ′s(C) = B, for all C.

By (*), Pt. 2) of Definition 7.1 for Γ′ |=dep σ
′ is satisfied.

By (*) and since Γ′s v Γs
2, Pt. 1) of Definition 7.1 for Γ′ |=dep σ

′ is satisfied.
So v) holds.

(TRY`): Then s = try s1 catch s2, for some s1 and s2.
By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ� Γ1 {s2}Γ2 : `2,
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where `′ = `2 and Γ′ = Γ1 � Γ2.
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), `dep σ1 and T1 6= • =⇒ Γ1 |=dep σ1.
By Lemma A.2, we get that Γ1

s(C) = B ⇐⇒ Γs(C) = B, for all C.
By definition of �, Γ1

s(C) = B ⇐⇒ Γ� Γ1
s(C) = B, for all C.

By Lemma A.2 again, we get that Γ� Γ1
s(C) = B ⇐⇒ Γ2

s(C) = B, for all C.
By transitivity of “⇐⇒ ”, Γ1

s(C) = B ⇐⇒ Γ2
s(C) = B, for all C. (*)

By definition of �, Γ′s v Γs
1.

Thus Γ′ |=dep σ1.
Case on T1.
T1 = skip: Then σ1 = σ′ and R = T1.

So iv) and v) hold.
T1 = •: Then 〈σ1, s2〉 ⇒ 〈σ′, R〉.

By Lemma 7.3, since (Γ� Γ1)s = Γs, `dep Γ� Γ1.
By (IH), `dep σ′ and R 6= • =⇒ Γ2 |=dep σ

′.
So iv) holds.
By definition of �, Γ′s v Γs

2.
This, and (*), gives Γ′ |=dep σ2.
So v) holds.

Errors
Lemma 7.5 (error consistency preservation) For all σ, σ′ and t, if

i) `err σ
ii) 〈σ, t〉 ⇒ 〈σ′, R〉

then
iv) `err σ′

holds.
Proof for a: By mutual induction in the height j of the reduction derivation of each of e, c and i.

Base e: Two cases to consider.
(NUM⇒) : Then e = n for some n.

As σ′ = σ, iv) follows.
(VAR⇒) : Same argument as in (NUM`) case.

Base c: Three cases to consider.
(INIT-A`) : Then e = C {i} = τ(C).

As σ′ = σ, iv) follows.
(INIT-S-A⇒) : Similar argument as in (INIT-A⇒) case.
(INIT-S-UF⇒) : Then by i) we get

∀Ĉ 6= C .σ′(Ĉ) = • =⇒ ∃σ′′; (σ′′ v σ′), (`err σ′′), (σ′′(Ĉ) 6= •) .

〈σ′′, τ(Ĉ)〉 ⇒ 〈 , •〉.

We have σ′ = σ[C 7→ •]. So σ′(C) = •. Since σ′ and σ are so similar, to prove iv) we must only show that

∃σ′′; (σ′′ v σ′), (`err σ′′), (σ′′(C) 6= •) .
〈σ′′, τ(C)〉 ⇒ 〈 , •〉.

This σ′′ is σ; by Lemma 7.1, σ v σ′. iv) follows from (INIT-S-UF⇒) and i).
Base i: One case to consider.

(SKIP⇒) : Then i = skip.
As σ′ = σ, iv) follows.

We now assume Lemma 7.5 holds for e, c and i with reduction derivation height ≤ n. This is our induction
hypothesis, (IH). We must show that Lemma 7.5 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Six cases to consider.

(FIELD-E⇒) : Then e = C.x for some C.x.
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We have 〈σ, τ(C)〉 ⇒ 〈σ′, •〉.
By (IH), iv) holds.

(FIELD-OK⇒) Near-identical argument as in (FIELD-E⇒) case.
(OP-EL⇒) : Then e = e1 ⊕ e2 for some operator ⊕.

We have 〈σ, e1〉 ⇒ 〈σ′, •〉.
By (IH), iv) holds.

(OP-ER⇒) : Then e = e1 ⊕ e2 for some operator ⊕.
We have 〈σ, e1〉 ⇒ 〈σ1, ◦〉.
By (IH), `err σ1.
We also have 〈σ1, e2〉 ⇒ 〈σ′, •〉.
By (IH), iv) holds.

(OP-EP⇒) : Near-identical argument as in (OP-ER⇒) case.
(OP-OK⇒) : Near-identical argument as in (OP-ER⇒) case.

Inductive step c: Four cases to consider.
(INIT-U⇒) : Then c = C {i} for some C and i.

We have 〈σ[C 7→ B], i〉 ⇒ 〈σ′′[C 7→ B], T 〉, where σ′ = σ′′[C 7→ I(T )].
By i), σ(C) = U and Definition 7.3, `err σ[C 7→ B].
By (IH), `err σ′′[C 7→ B]. Case on T .
T = skip: Then, I(T ) = I, so iv) follows by Definition 7.3 and the definition of σ′.
T = •: Then I(T ) = •, so σ′(C) = •.

Since `err σ′′[C 7→ B] and σ′′[C 7→ B] v σ′, we have

∀Ĉ 6= C .σ′(Ĉ) = • =⇒ ∃σ′′′; (σ′′′ v σ′), (`err σ′′′), (σ′′′(Ĉ) 6= •) .

〈σ′′′, τ(Ĉ)〉 ⇒ 〈 , •〉.

Since σ′ and σ′′[C 7→ B] are so similar, to prove iv) we must only show that

∃σ′′′; (σ′′′ v σ′), (`err σ′′′), (σ′′′(C) 6= •) .
〈σ′′′, τ(C)〉 ⇒ 〈 , •〉.

This σ′′′ is σ; by Lemma 7.1, σ v σ′. iv) follows from (INIT-U⇒) and i).
(INIT-S-UI⇒), (INIT-S-UUF⇒) and (INIT-S-UUI⇒): All similar in

style to (INIT-U⇒) case.
Inductive step i: Observe that σ(C) = B. Five cases to consider.

(E-E⇒) : Here i = C.x := e and 〈σ, e〉 ⇒ 〈σ′, •〉.
iv) follows from (IH).

(FIELD-A-E⇒) : Impossible as σ(C) = B.
(FIELD-A⇒) : Then i = C.x := e for some C.x and e.

We have 〈σ, e〉 ⇒ 〈σ′′, n〉 and 〈σ′′, C.x〉 ⇒ 〈σ′′, n′〉, last reduction holding since σ(C) = B. Here, σ′ = σ′′[C.x 7→
n].
By (IH), `err σ′′, and thus iv).

(SEQ-E⇒) : Then i = i1; i2 for some i1 and i2.
We have 〈σ, i1〉 ⇒ 〈σ′, •〉.
By (IH), iv).

(SEQ-OK⇒) : Then i = i1; i2 for some i1 and i2.
We have 〈σ, i1〉 ⇒ 〈σ1, ◦〉.
By (IH), `err σ1.
We also have 〈σ1, i2〉 ⇒ 〈σ′, R〉.
By (IH), iv).

Proof of s: Follows from Lemma 7.5 for a and Lemma 7.1, since no semantic rule for statement evaluation
performs a class initialization. To give an impression of how the proof for the various cases goes, we prove one
sample case below, namely that of (TRY`).

Assume Lemma 7.5 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We
must show that Lemma 7.5 holds for s with typing derivation height n+ 1.
Inductive step: One (interesting) case to consider.

(TRY`) : Then s = try s1 catch s2, for some s1 and s2.



23

Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), `err σ1.
Case on T1.
T1 = skip: Then σ′ = σ1.

So iv) holds.
T1 = •: Let 〈σ1, s2〉 ⇒ 〈σ′, R〉.

By (IH), `err σ′.
So iv) holds.

Lemma 7.6 (error leaks pc) For all Γ, Γ′, t, pc and `′, if
1) pc ` Γ {t}Γ′ : `′,
2) `dep Γ,
3) Γ |=err t,

then
4) pc v `′

holds.
Proof for a: By mutual induction in the height j of the typing derivation of each of e, c and i.

Base e: Two cases to consider.
(NUM`) : Then e = n for some n.

Assume (towards a contradiction) that 3) holds.
Only candidate rule for establishing 3) is (NUM⇒), and for that rule, 3) is false, contradicting 3).
So 3) is impossible.
So 4) holds vacuously.

(VAR`) : Near-identical argument as in (NUM`) case.
Base c: Two cases to consider.

(INIT-T`) : Then e = C {i} = τ(C).
Assume (towards a contradiction) that 3) holds.
Since Γ |=dep σ and Γs(C) = I, σ(C) = I, the only candidate rule to establish 3) (INIT-A⇒). For that rule, since
R = σ(C) = I, 3) is false, contradicting 3).
So 3) is impossible.
So 4) holds vacuously.

(INIT-S-T`) : Similar argument as in (INIT-T`) case.
Base i: No cases to consider.
We now assume Lemma 7.6 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.6 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Three cases to consider.

(FIELD`) : Then e = C.x for some field C.x.
By 1), pc ` Γ {a}Γ′ : `′.
Assume that 3) holds.
Case on the candidate rules for establishing 3).
(FIELD-E⇒) : We have 〈σ, τ(C)〉 ⇒ 〈σ′, •〉 and R = •.

By (IH), with σ as evidence that τ(C) can fail, pc v `′.
So 4) holds.

(FIELD-OK⇒) : Then R 6= •, so 3) is false, contradicting 3).
So 4) holds vacuously.

(OP-T`) : Then e = e1 ⊕ e2 for some ei and some total operator ⊕.
By 1), pc ` Γ {e1}Γ1 : `1 and pc t `1 ` Γ1 {e2}Γ′ : `2,
where `′ = `1 t `2.
Assume that 3) holds.
Case on the rule used to establish 3).
(OP-EL⇒): Then 〈σ, e1〉 ⇒ 〈σ′, •〉, with R = •.

By (IH), with σ as evidence that e1 can fail, pc v `1.
Since `1 v `′, 4) holds.

(OP-ER⇒): Then 〈σ, e1〉 ⇒ 〈σ1, n1〉 and 〈σ1, e2〉 ⇒ 〈σ′, •〉,
with R = •.
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By Lemma 7.3, `dep Γ1. By Lemma 7.4, `dep σ1 and Γ1 |=dep σ1.
By Lemma 7.5, `err σ1.
By (IH), with σ1 as evidence that e2 can fail, pc v `2.
Since ell2 v `′, 4) holds.

(OP-OK⇒): Then R 6= •, so 3) is false, contradicting 3).
So 4) holds vacuously.

(OP-P`) : Then e = e1 ⊕ e2 for some ei and some partial operator ⊕.
By 1), pc ` Γ {e1}Γ1 : `1 and pc t `1 ` Γ1 {e2}Γ′ : `2,
where `′ = `1 t `2 t lvl(e1) t lvl(e2) t pc.
4) follows.

Inductive step c: Three cases to consider.
(INIT-F`) : Then c = C {i} for some C and i.

By 1), pc v Γc(C) v Γe(C) ` Γ[C 7→s B] {i}Γ′′[C 7→s B] : `C ,
where `′ = `C v Γ′′[C 7→s B].
Assume that 3) holds.
Case on σ(C).
σ(C) = B : Impossible as Γs(C) = U and Γ |=dep σ.

So 4) holds vacuously.
σ(C) = I : Then R 6= •, so 3) is false, contradicting 3).

So 4) holds vacuously.
σ(C) = U : Then 〈σ[C 7→ B], i〉 ⇒ 〈σ′′[C 7→ B], T 〉,

where σ′ = σ′′[C 7→ I(T )].
Case on I(T ).
I(T ) = I : Then R 6= •, so 3) is false, contradicting 3).

So 4) holds vacuously.
I(T ) = • : By Definitions 7.2 and 7.1,
`dep σ[C 7→ B] and Γ[C 7→s B] |=dep σ[C 7→ B].
By (IH), with σ[C 7→ B] as evidence that i can fail, `C v pc.
Since `C v `′, 4) follows.

σ(C) = • : By Definition 7.3, there exists some σ̂ with σ̂ v σ, `dep σ̂, Γ |=dep σ̂ and σ̂(C) 6= • for which
〈σ̂, c〉 ⇒ 〈σ̂′, •〉 (*).
We already know σ̂(C) 6= •.
We also have σ̂(C) 6= I and σ̂(C) 6= B, for if either were the case, (*) would have been concluded using
(INIT-A⇒), which, when σ̂(C) 6= • gives R 6= •.
So σ̂(C) = U. The remainder of this case equals the proof of case σ(C) = U, with a hat on all the σs.

(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek.

Assume that 3) holds.
Induction in k.
Base: Here, k = 0. So i = skip.

Only candidate rule for establishing 3) is (SKIP⇒), and for that rule, 3) is false, contradicting 3).
So 3) is impossible.
So 4) holds vacuously.

Inductive step: Assume Lemma 7.6 holds for k ≤ m. This is our induction hypothesis (IH)k. We must show
that Lemma 7.6 holds for k = m+ 1.
By assumption 1), we get that

⊔q−1
p=1 `p t pc ` Γq−1 {eq}Γq : `q for all q from 1 to m+ 1.

Let 〈σ,C.x1 := e1; . . . ;C.xm := em〉 ⇒ 〈σm, Tm〉. Case on the candidate rules for establishing 3).
(SEQ-E⇒) : Then Tm = •.

By (IH), with σ as evidence that C.x1 := e1; . . . ;C.xm := em can fail,
⊔m−1

p=1 `p t pc v `m.
Since `m v `′, 4) holds.

(SEQ-OK⇒) : Then Tm = skip.
By Lemma 7.3, `dep Γm. By Lemma 7.4, `dep σm and Γm |=dep σm.
By Lemma 7.5, `err σm.
Let 〈σm, em+1〉 ⇒ 〈σ′, V 〉.
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Now, R = • ⇐⇒ V = •.
Assume V = •.
Then, by (IH), with σm as evidence that em+1; can fail,

⊔m
p=1 `m+1 t pc v `m.

Since `m+1 v `′, 4) holds.

Proof of s: Follows from Lemma 7.6 for a, since no semantic rule for statement evaluation introduces an error.
To give an impression of how the proof for the various cases goes, we prove one sample case below, namely that
of (TRY`).

Assume Lemma 7.6 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We
must show that Lemma 7.6 holds for s with typing derivation height n+ 1.
Inductive step: One (interesting) case to consider.

(TRY`) : Then s = try s1 catch s2, for some s1 and s2.
By 1), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ� Γ1 {s2}Γ2 : `2,
where `′ = `2 and Γ′ = Γ1 � Γ2.
By 3), 〈σ, s〉 ⇒ 〈σ′, •〉 for some σ and σ′ for which `err σ, `dep σ and Γ |=dep σ. (*)
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉 and 〈σ1, s2〉 ⇒ 〈σ′, T2〉.
T1 = T2 = •, else (*) is contradicted.
By Lemma 7.5, `err σ1.
By Lemma 7.4, `dep σ1.
Since σ v σ1, Γ |=dep σ1.
Since Γ v Γ1, (Γ� Γ1)s = Γs, and thus Γ� Γ1 |=dep σ1.
So Γ� Γ1 |=err s2, evidenced by σ1.
By (IH), pc t `1 v `2. So pc v `2.
So 4) holds.

Lemma A.4. ∼Γ
l is an equivalence relation.

Proof: Recall that σ1 ∼Γ
l σ2 iff, for all C,

σ1(C) 6= σ2(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `. (∼Γ
l )

An equivalence relation is i) reflexive, ii) symmetric, and iii) transitive. We prove that ∼Γ
l has each of these properties now.

i) We must show that σ ∼Γ
l σ, for all σ. This trivially follows from antireflexivity of 6=; σ(C) 6= σ(C), for all C and σ,

meaning (∼Γ
l ) is vacuously true.

ii) We must show that σ1 ∼Γ
l σ2 =⇒ σ2 ∼Γ

l σ1, for all σi. Assume σ1 ∼Γ
l σ2. Then, for any C,

σ1(C) 6= σ2(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `.

By symmetry of 6=,
σ1(C) 6= σ2(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `.

As C was arbitrary, we are done.
iii) We must show that σ1 ∼Γ

l σ2 ∧ σ2 ∼Γ
l σ3 =⇒ σ1 ∼Γ

l σ3. Assume σ1 ∼Γ
l σ2 and σ2 ∼Γ

l σ3 hold. We must show that
then σ1 ∼Γ

l σ3 must hold. For any C, we have

σ1(C) 6= σ2(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v ` (∼Γ
` 12)

σ2(C) 6= σ3(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `. (∼Γ
` 23)

We must show that

σ1(C) 6= σ3(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `. (∼Γ
` 13)

If Γ |=err τ(C) is false, then (∼Γ
` 12), (∼Γ

` 23) and (∼Γ
` 13) are all vacuously true. Assume Γ |=err τ(C) is true. If

σ1(C) 6= σ2(C) resp. σ2(C) 6= σ3(C), then by (∼Γ
` 12) resp. (∼Γ

` 23), Γe(C) 6v `, and thus (∼Γ
` 13) holds. Assume

σ1(C) = σ2(C) and σ2(C) = σ3(C). Then σ1(C) = σ3(C) by transitivity of =, so (∼Γ
` 13) is vacuously true.

Raising the Γc and Γe makes it more likely for σ1 ∼Γ
` σ2 to hold, as the conclusion of Definition 7.5 is more likely

to hold.

Lemma A.5 (∼Γ
l monotone wrt. Γ). If σ1 ∼Γ

l σ2, ∀C . Γs(C) = B =⇐⇒ Γs(C) = B and Γ v Γ′, then σ1 ∼Γ′
l σ2.
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Noninterference
Lemma A.6. =` is an equivalence relation.

Proof: An equivalence relation is i) reflexive, ii) symmetric, and iii) transitive. We prove that ∼` has each of these
properties now.

i) We must show that σ =` σ, for all σ. Parts 1 and 3 of Definition 4.1 hold by reflexivity of =, and 2 by idempotence of
∩ and ∪.

ii) We must show that σ1 =` σ2 =⇒ σ2 =` σ1, for all σi. Assume σ1 =` σ2. We must show that σ2 =` σ1. Parts 1 and 3
of Definition 4.1 hold by symmetry of =, and 2 by commutativity of ∩ and ∪.

iii) We must show that σ1 =` σ2 ∧ σ2 =` σ3 =⇒ σ1 =` σ3, for all σi. Assume σ1 =` σ2 and σ2 =` σ3. We must show
that σ1 =` σ3. We do this by showing that each of the three parts of Definition 4.1 hold.
1. Follows from transitivity of =.
2. Let lvl(C) v `. Since σ1 =` σ2, σ1(C) = σ2(C). Since σ2 =` σ3, σ3(C) = σ2(C). By transitivity of =, σ1(C) =
σ3(C).

3. Let lvl(C.x) v `. Then lvl(C) v `. So, by the proof of point 2 above, all σi agree on C. Two cases to consider.
• C 6∈ I(σi) ∪ B(σi): Vacuously true.
• C ∈ I(σi) ∪ B(σi): As σ1 =` σ2 and σ2 =` σ3, σ1(C.x) = σ2(C.x) and σ2(C.x) = σ3(C.x). By transitivity of =,
σ1(C.x) = σ3(C.x).

As C and C.x were arbitrary, σ1 =` σ3

The following lemma follows from the definition of �.

Lemma A.7. For all Γ1 and Γ2, (Γ1 � Γ2)s v Γs
j and Γe

j v (Γ1 � Γ2)e.

Lemma 7.7 For all t, σ, σ′, Γ, Γ′, `′, pc, if
i) pc ` Γ {t}Γ′ : `′

ii) `dep σ, `dep Γ, Γ |=dep σ, `err σ
iii) 〈σ, t〉 ⇒ 〈σ′, R〉
iv) pc 6v `,

then
v) σ ∼Γ′

` σ′.
vi) σ =` σ

′.
Proof of “ =⇒ v)” for a: By mutual induction in the height j of the typing derivation of each of e, c and i.

Base e: Two cases to consider.
(NUM`) : Then e = n for some n.

By (NUM⇒), σ′ = σ, so σ ∼Γ′
` σ′ follows by reflexivity of ∼Γ′

` .
(VAR`) : Same argument as in (NUM`) case.

Base c: Two cases to consider.
(INIT-T`) : Then c = C {i} = τ(C) for some C.

By (INIT-A⇒), σ′ = σ, so σ ∼Γ′
` σ′ follows by reflexivity of ∼Γ′

` .
(INIT-S-T`) : Same argument as in (INIT-T`) case.

Base i: No case to consider.
We now assume Lemma 7.7 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.7 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Three cases to consider.

(OP-T`) : Then e = e1 ⊕ e2 for some ei and some total operator ⊕.
Let 〈σ, e1〉 ⇒ 〈σ1, V1〉.
By i) we have that pc ` Γ {e1}Γ1 : `1 and pc t `1 ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where `′ = `1 t `2.
By (IH), σ ∼Γ1

` σ1.
By Lemmas A.5 and 7.2, σ ∼Γ′

` σ1.
Case on the rule used to establish iii).
(OP-EL⇒): Then σ′ = σ1.

So σ ∼` σ
′.

(OP-ER⇒): Then V1 6= •.
By Lemma 7.4, Γ1 |=dep σ1.
Let 〈σ1, e2〉 ⇒ 〈σ′, V2〉.
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By (IH), σ1 ∼Γ′
` σ′.

By transitivity of ∼Γ′
` , σ ∼Γ′

` σ′.
(OP-OK⇒): Same argument as prior case.

(OP-P`) : Then e = e1 ⊕ e2 for some ei and some partial operator ⊕.
Let 〈σ, e1〉 ⇒ 〈σ1, V1〉.
By i) we have that pc ` Γ {e1}Γ1 : `1 and pc ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where ` = `1 t `2.
By (IH), σ ∼` σ1.
Case on the rule used to establish iii).
All cases and proofs thereof are the same as for (OP-T`), except that (OP-P`) has an extra case:
(OP-EP⇒): Same argument as case (OP-OK⇒).

(FIELD`) : Then e = C.x for some field C.x.
We have pc ` Γ {τ(C)}Γ′ : ` by i).
Let 〈σ, τ(C)〉 ⇒ 〈σ′, I〉.
By (IH), σ ∼Γ′

` σ′, regardless of whether (FIELD-E⇒) or (FIELD-OK⇒) was used to establish iii).
Inductive step c: Three cases to consider.

(INIT-F`) : Then c = C {i} for some C and i. Also, Γ(C) = U.
By i) we have pc t Γc(C) t Γe(C) ` Γ[C 7→s B] {i}Γ′′[C 7→s B] : `C where Γ′ = Γ′′[C 7→ 〈I, pc, `C〉] and
`′ = `C t Γ′′e(C).
Case on the rule used to establish iii).
(INIT-A⇒) : Then σ′ = σ, and thus σ ∼Γ′

` σ′ follows from reflexivity of ∼Γ′
` .

(INIT-U⇒) : Then σ(C) = U. Let 〈σ[C 7→ B], i〉 ⇒ 〈σ′′[C 7→ B], T 〉.
So σ′ = σ′′[C 7→ I(T )].
From ii) and Γ(C) = σ(C) = U, we get Γ[C 7→s B] |=dep σ[C 7→ B]. Also, from ii), `dep Γ[C 7→s B] and
`dep σ[C 7→ B]. Also, from ii), `err σ[C 7→ B].
By (IH), ii) σ[C 7→ B] ∼Γ′′[C 7→sB]

` σ′′[C 7→ B].
Since σ(C) = U and σ′(C) 6= U, Γ′c(C) 6v ` must hold. This follows from the definition of Γ′ and pc 6v `.
If σ′(C) = •, then furthermore Γ′e(C) 6v ` must hold.
σ′(C) = • when T = •. By Lemma 7.6, with σ[C 7→ B] as evidence that i can fail, we get that pc tΓc(C)t
Γe(C) v `C . So pc v `C . Γ′e(C) 6v ` how follows from the definition of Γ′.

(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: By (INIT-F`) (the only rule that starts a i-typing),
and since Γ |=dep σ, σ(C) = B.
One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek. Induction in k.

Base: Here, k = 0. Then i = skip.
By (INIT`), Γ′ = Γ. Only (SKIP⇒) can conclude iii).
(SKIP⇒) gives σ′ = σ. So v) holds by reflexivity of ∼Γ′

` .
Inductive step: Assume Lemma 7.7 holds for k ≤ m. This is our induction hypothesis (IH)k. We must show

that Lemma 7.7 holds for k = m+ 1.
Let 〈σ,C.x1 := e1; . . . ;C.xm := em〉 ⇒ 〈σm, Tm〉.
By assumption i), we get that

⊔q−1
p=1 `p t pc ` Γq−1 {eq}Γq : `q for all q from 1 to m + 1. Γ = Γ0 and

Γ′ = Γm+1.
By (IH)k, σ ∼Γm

` σm.
By Lemma A.5, σ ∼Γ′

` σm.
By Lemma 7.3, `dep Γm.
By Lemma 7.4, Γm |=dep σm and `dep σm.
Case on the rule used to establish iii).
(SEQ-E⇒) : Then σ′ = σm, so v) holds.
(SEQ-OK⇒) : We have 〈σm, C.xm+1 := em+1〉 ⇒ 〈σ′, T 〉 (*).

Let 〈σm, em+1〉 ⇒ 〈σe, Ve〉.
By (IH), σm ∼Γm+1

` σe.
Case on Ve.
Ve = •: Then (E-E⇒) was used to establish (*), so T = • and σ′ = σe.

Since Γ′ = Γm+1 and σm ∼Γm+1

` σe, v) holds by transitivity of ∼Γ′
` .
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Ve = ne: By Lemma 7.4, `dep σe and Γm+1 |=dep σe.
We let 〈σe, C.xm+1〉 ⇒ 〈σC.x, VC.x〉 (**).
Since i), Γs

i(C) = B.
Since Γm+1 |=dep σe, σe(C) = B.
So the only rule which can conclude (**) is (FIELD-OK⇒), which will only be able to use (INIT-A⇒)
or (INIT-S-A⇒). In either case, σC.x = σe and VC.x = nC.x for some nC.x.
Since σm ∼Γm+1

` σe, σm ∼Γm+1

` σC.x.
Since σ′ = σC.x[C.x 7→ ne], and σ′ does not differ from σC.x in initialization statuses, we get by
transitivity of ∼Γm+1

` that σ ∼Γm+1

` σ′.
Since Γ′ = Γm+1, v) follows.

Proof of “ =⇒ v)” for s: Follows from Lemma 7.7 for a, since no semantic rule for statement evaluation
introduces an error. To give an impression of how the proof for the various cases goes, we prove one sample case
below, namely that of (TRY`).

Assume Lemma 7.7 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We
must show that Lemma 7.7 holds for s with typing derivation height n+ 1.
Inductive step: One (interesting) case to consider.

(TRY`): Then s = try s1 catch s2, for some s1 and s2.
By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ� Γ1 {s2}Γ2 : `2, where `′ = `2 and Γ′ = Γ1 � Γ2.
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), σ ∼Γ1

` σ1.
By Lemmas A.5 and A.7, σ ∼Γ�Γ1

` σ1 and σ ∼Γ1�Γ2

` σ1.
Case on T1.
T1 = skip: Then σ′ = σ1.

So v) holds.
T1 = •: Let 〈σ1, s2〉 ⇒ 〈σ′, R〉.

By (IH), σ1 ∼Γ2

` σ′.
By Lemmas A.5 and A.7, σ1 ∼Γ1�Γ2

` σ′.
By transitivity of ∼Γ1�Γ2

` , σ1 ∼Γ1�Γ2

` σ′.
So v) holds.

Proof of “ =⇒ vi)” for a: By mutual induction in the height j of the typing derivation of each of e, c and i.
Base e: Two cases to consider.

(NUM`) : Then e = n for some n.
By the sole applicable rule (NUM⇒), σ′ = σ, so σ =` σ

′ follows by reflexivity of =`.
(VAR`) : Similar argument as in (NUM`) case.

Base c: Two cases to consider.
(INIT-T`) : Then c = C {i} = τ(C) for some C.

By the sole applicable rule (INIT-A⇒), σ′ = σ, so σ =` σ
′ follows by reflexivity of =`.

(INIT-S-T`) : Similar argument as in (INIT-T`) case.
Base i: No case to consider.
We now assume Lemma 7.7 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.7 holds for e, c and i with typing derivation height n+ 1.
Inductive step e: Three cases to consider.

(OP-T`) : Then e = e1 ⊕ e2 for some ei and some total operator ⊕.
Let 〈σ, e1〉 ⇒ 〈σ1, V1〉.
By i) we have that pc ` Γ {e1}Γ1 : `1 and pc t `2 ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where ` = `1 t `2.
By (IH), σ =` σ1. Case on the rule used to establish iii).
(OP-EL⇒): Then σ′ = σ1. So σ =` σ

′.
(OP-ER⇒): Then V1 6= •.

By Lemmas 7.3 and 7.4, `dep Γ1, `dep σ1 and Γ1 |=dep σ1.
We have 〈σ1, e2〉 ⇒ 〈σ′, V2〉.
By (IH), σ1 =` σ

′.
By transitivity of =`, σ =` σ

′.
(OP-OK⇒): Same argument as prior case.
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(OP-P`) : Then e = e1 ⊕ e2 for some ei and some partial operator ⊕.
Let 〈σ, e1〉 ⇒ 〈σ1, V1〉.
By i) we have that pc ` Γ {e1}Γ1 : `1 and pc ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where ` = `1 t `2.
By (IH), σ =` σ1.
Case on the rule used to establish iii).
All cases and proofs thereof are the same as for (OP-T`), except that (OP-P`) has an extra case:
(OP-EP⇒): Same argument as case (OP-OK⇒).

(FIELD`) : Then e = C.x for some field C.x.
We have pc ` Γ {τ(C)}Γ′ : ` by i).
Let 〈σ, τ(C)〉 ⇒ 〈σ′, I〉.
By (IH), σ =` σ

′, regardless of whether (FIELD-E⇒) or (FIELD-OK⇒) was used to establish iii).
Inductive step c: Three cases to consider.

(INIT-F`) : Then c = C {i} = τ(C) for some C.
Also, Γ(C) = U.
By i) we have pc t Γc(C) t Γe(S) ` Γ[C 7→s B] {i}Γ′′[C 7→s B] : `C where Γ′ = Γ′′[C 7→ 〈I, pc, `C〉] and
`′ = `C t Γ′′e(C)
Case on the rule used to establish iii).
(INIT-A⇒) : Then σ′ = σ, and thus σ =` σ

′ follows from reflexivity of =`.
(INIT-U⇒) : Let 〈σ[C 7→ B], i〉 ⇒ 〈σ′′[C 7→ B], T 〉.

So σ′ = σ′′[C 7→ I(T )].
From ii) and Γ(C) = σ(C) = U,
we get Γ[C 7→s B] |=dep σ[C 7→ B].
Also, from ii), `dep Γ[C 7→s B] and `dep σ[C 7→ B].
σ[C 7→ B] =` σ

′′[C 7→ B] follows from (IH).
By definition of =` and σ′, σ =` σ

′, regardless of the value of T .
(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek.

Induction in k.
Base: Here, k = 0. Then i = skip.

By (INIT`), Γ′ = Γ.
Only (SKIP⇒) can conclude iii).
(SKIP⇒) gives σ′ = σ.
So vi) holds by reflexivity of =`.

Inductive step: Assume Lemma 7.7 holds for k ≤ m.
This is our induction hypothesis (IH)k.
We must show that Lemma 7.7 holds for k = m+ 1.
Let 〈σ,C.x1 := e1; . . . ;C.xm := em〉 ⇒ 〈σm, Tm〉.
By assumption i), we get that

⊔q−1
p=1 `p t pc ` Γq−1 {eq}Γq : `q for all q from 1 to m+ 1. Γ′ = Γm+1.

By (IH)k, σ =` σm.
By Lemma 7.3, `dep Γm.
By Lemma 7.4, Γm |=dep σm and `dep σm.
Case on the rule used to establish iii).
(SEQ-E⇒) : Then σ′ = σm, so vi) holds.
(SEQ-OK⇒) : We have 〈σm, C.xm+1 := em+1〉 ⇒ 〈σ′, T 〉 (*).

Let 〈σm, em+1〉 ⇒ 〈σe, Ve〉.
By (IH), σm =` σe, so σ =` σe by transitivity of =`.
Case on Ve.
Ve = •: Then (E-E⇒) was used to establish (*).

So T = • and σ′ = σe.
Since σm =` σe, vi) holds by transitivity of =`.

Ve = ne: By Lemma 7.4, `dep σe and Γm+1 |=dep σe.
We let 〈σe, C.xm+1〉 ⇒ 〈σC.x, VC.x〉 (**).
Since i), Γs

j(C) = B.
Since Γm+1 |=dep σe, σe(C) = B.
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So the only rule which can conclude (**) is (FIELD-OK⇒), which will only be able to use (INIT-A⇒)
or (INIT-S-A⇒).
In either case, σC.x = σe and VC.x = nC.x for some nC.x.
Since σ =` σe, σ =` σC.x by transitivity of =`.
Since σ′ = σC.x[C.x 7→ ne], and pc 6v `, we get from i) that σC.x =` σC.x[C.x 7→ ne].
By transitivity of =`, σ =` σ

′. So vi) holds.

Proof of “ =⇒ vi)” for s: By induction in the height j of the typing derivation of s.

Base: Three cases to consider.
(SKIP`): Then s = skip.

iii) is impossible, so vi) is vacuously true.
(VAR-A`): Then s = x := e for some x and e.

By i), pc ` Γ {e}Γ′ : `′ and pc v lvl(x). (*)
(VAR-A⇒) and (E-E⇒) can establish iii).
In both cases, e is evaluated under σ.
Let 〈σ, e〉 ⇒ 〈σ′′, V 〉.
By Lemma 7.7 for a, σ =` σ

′′.
Case on V .
V = •: Then iii) was established through (E-E⇒).

By (E-E⇒), σ′ = σ′′.
So vi) holds.

V = n: Then iii) was established through (VAR-A⇒).
By (VAR-A⇒), σ′ = σ′′[x 7→ n].
By (*), σ′′ =` σ

′.
By transitivity, σ =` σ

′.
So vi) holds.

(FIELD-A`): Then s = C.x := e for some C.x and e.
By i), pc ` Γ {e}Γ′′ : `e, pc t `e ` Γ′′ {C.x}Γ′ : `C.x, `′ = `e t `C.x and pc v lvl(x). (*)
(FIELD-A-E⇒), (FIELD-A-OK⇒) and (E-E⇒) can establish iii).
In all cases, e is evaluated under σ.
Let 〈σ, e〉 ⇒ 〈σe, Ve〉.
By Lemma 7.7 for a, σ =` σe.
Case on Ve.
Ve = •: Then iii) was established through (E-E⇒).

By (E-E⇒), σ′ = σ′′.
So vi) holds.

Ve = n: Then iii) was established through either (FIELD-A-E⇒) or (FIELD-A-OK⇒).
In both cases, C.x is evaluated under σe.
Let 〈σe, C.x〉 ⇒ 〈σC.x, VC.x〉.
By Lemmas 7.3, 7.4 and 7.5, `dep Γ′′ `dep σe, Γ′′ |=dep σe and `err σe.
By Lemma 7.7 for a, σe =` σC.x.
By transitivity, σ =` σC.x.
Case on VC.x.
VC.x = •: Then iii) was established through (FIELD-A-E⇒).

By (FIELD-A-E⇒), σ′ = σC.x.
So vi) holds.

VC.x 6= •: Then iii) was established through (FIELD-A-OK⇒).
By (FIELD-A-OK⇒), σ′ = σC.x[C.x 7→ n].
By (*), σC.x =` σ

′.
By transitivity, σ =` σ

′.
So vi) holds.

Assume Lemma 7.7 holds for s with typing derivation height ≤ n. This is our induction hypothesis, (IH). We must
show that Lemma 7.7 holds for s with typing derivation height n+ 1.

Inductive step: Four cases to consider.
(SEQ`): Then s = s1; s2 for some s1 and s2.

By i), pc ` Γ {s1}Γ1 : `1, pc t `1 ` Γ1 {s2}Γ′ : `2 and `′ = `1 t `2.
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(SEQ-E⇒) and (SEQ-OK⇒) can establish iii).
In both cases, s1 is evaluated under σ.
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), σ =` σ1.
Case on T1.
T1 = •: Then iii) was established through (SEQ-E⇒).

By (SEQ-E⇒), σ′ = σ1.
So vi) holds.

T1 = skip: Then iii) was established through (SEQ-OK⇒).
By (SEQ-E⇒), s2 is evaluated under σ1.
Let 〈σ1, s2〉 ⇒ 〈σ′, R〉.
By Lemmas 7.3, 7.4 and 7.5, `dep Γ1 `dep σ1, Γ1 |=dep σ1 and `err σ1.
By (IH), σ1 =` σ

′.
By transitivity, σ =` σ

′.
So vi) holds.

(IF`): Then s = if e then s1 else s2 for some e, s1 and s2.
By i), pc ` Γ {e}Γe : `e, pc t `e ` Γe {s1}Γ1 : `1, and pc t `e ` Γe {s2}Γ2 : `2, where Γ′ = Γ1 � Γ2 and
`′ = `1 t `2.
(IF-T⇒), (IF-F⇒) and (E-E⇒) can establish iii).
In both cases, e is evaluated under σ.
Let 〈σ, e〉 ⇒ 〈σe, Ve〉.
By Lemma 7.7 for a, σ =` σe.
Case on Ve.
Ve = •: Then iii) was established through (E-E⇒).

By (E-E⇒), σ′ = σe.
So vi) holds.

Ve = 0̄: Then iii) was established through (IF-T⇒).
By (IF-T⇒), s1 is evaluated under σe.
Let 〈σe, s1〉 ⇒ 〈σ′, R〉.
By Lemmas 7.3, 7.4 and 7.5, `dep Γe `dep σe, Γe |=dep σe and `err σe.
By (IH), σe =` σ

′.
By transitivity, σ =` σ

′.
So vi) holds.

Ve = 0: Near-identical argument as in the Ve = 0̄ case.
(TRY`): Then s = try s1 catch s2, for some s1 and s2.

By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ� Γ1 {s2}Γ2 : `2,
where `′ = `2 and Γ′ = Γ1 � Γ2.
(TRY-E⇒) and (TRY-OK⇒) can establish iii).
In both cases, s1 is evaluated under σ.
Let 〈σ, s1〉 ⇒ 〈σ1, T1〉.
By (IH), σ =` σ1.
Case on T1.
T1 = skip: Then iii) was established through (TRY-OK⇒).

By (TRY-OK⇒), σ′ = σ1.
So vi) holds.

T1 = •: Then iii) was established through (TRY-E⇒).
By (TRY-E⇒), s2 is evaluated under σ1.
Let 〈σ1, s2〉 ⇒ 〈σ′, R〉.
By Lemmas 7.3, 7.4 and 7.5, `dep Γ1 `dep σ1, Γ1 |=dep σ1 and `err σ1.
Since Γ v Γ1, (Γ� Γ1)s = Γs.
From this, and Lemma A.2, `dep Γ� Γ1 and Γ� Γ1 |=dep σ1.
By (IH), σ1 =` σ

′.
By transitivity, σ =` σ

′.
So vi) holds.

(WHILE`): Then ŝ = while e do s, for some e and s.
By i), pc t `i ` Γi {e}Γ′i : `ei and pc t `i t `ei t lvl(e) ` Γ′i {s}Γi+1 : `si ,
where `0 = ⊥, `i+1 = `i t `ei t `si ,
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i = 0..n, (Γn, `n) = (Γn+1, `n+1),
`′ = `n, Γ = Γ0 and Γ′ =

⊙n
j=0 Γ′j � Γj+1.

From this, and since the type system is deterministic,
we have for all k > n that (Γk, `k) = (Γk−1, `k−1).
By transitivity, (Γk, `k) = (Γn, `n).
So pc t `k ` Γk {e}Γ′k : `ek and pc t `k t `ek t lvl(e) ` Γ′k {s}Γk+1 : `sk,
where `k+1 = `k t `ek t `sk, and k > n.
By Lemma 7.3, for all j ≥ 0, `dep Γ′j and `dep Γj+1 (*).
Let σ0 = σ, 〈σj , e〉 ⇒ 〈σe

j , Vj〉, 〈σe
j , s〉 ⇒ 〈σs

j , Tj〉 and σj+1 = σs
j .

We have that, for some j,
σ′ equals either σe

j (e evaluates to 0 or •) or σs
j (s evaluates to •).

This follows mainly from the observation that
a) if Vj ∈ {0, •},
〈σj , while e do s〉 ⇒ 〈σe

j , T̂j〉,
where T̂ = • if Vj = • and T̂j = skip if Vj = 0,

b) otherwise, if Tj = •,
〈σj , while e do s〉 ⇒ 〈σs

j , Tj〉,
and

c) otherwise,
〈σj , while e do s〉 ⇒ 〈σ̂, T̂ 〉
where σ̂ and T̂ are defined by
〈σs

j , while e do s〉 ⇒ 〈σ̂, T̂ 〉.
which follows from (E-E⇒), (WHILE-F⇒), (WHILE-T⇒), (SEQ-E⇒) and (SEQ-OK⇒).
It is therefore sufficient for us to prove that, for all j,
1’) σj =` σ

e
j , and

2’) σe
j =` σ

s
j .

To establish this, we also need, assuming
1) `dep σj , `err σj , Γj |=dep σj ,
to prove
2) `dep σe

j , `err σe
j , Γ′j |=dep σ

e
j ,

3) `dep σs
j , `err σs

j , Γj+1 |=dep σs,
We will then get vi) by transitivity of =`.
Let j be arbitrary.
Assume 1).
By Lemma 7.7 for a, 1’) holds.
By (*) and Lemmas 7.4 and 7.5, 2) holds.
By (IH), 2’) holds.
By (*) and Lemmas 7.4 and 7.5, 3) holds.

Lemma A.8. For all e and σ,
if 〈σ, e〉 ⇒ 〈σ′, 〉,
then for all σ′′, if σ′ v σ′′ and σ′(C) = B ⇐⇒ σ′′(C) = B for all C, 〈σ′′, e〉 ⇒ 〈σ′′, 〉.

Lemma 7.8 For all t, σ, σ′, Γ, Γ′, `, pc, if
i) pc ` Γ {t}Γ′ : `′

ii) (`dep Γ), (`dep σj), (Γ |=dep σj)
iii) (`err σj)
iv) 〈σj , t〉 ⇒ 〈σ′j , Rj〉
v) σ1 ∼` σ2, σ1 =` σ2

then
vi) Rj 6= • = Rj̄ =⇒ l′ 6v l

vii) σ1 ∼` σ2

viii) σ1 =` σ2

Proof for a: By mutual induction in the height z of the typing derivation of each of e, c and i.
Base e: Two cases to consider.
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(NUM`) : Then e = n for some n.
By (NUM⇒), σ′j = σj .
R1 6= • 6= R2, so vi) holds vacuously.
By Lemmas A.5 and 7.2, σ1 ∼Γ′

` σ2.
Now vii) and viii) follow from σ′j = σj .

(VAR`) : Same argument as in (NUM`) case.
Base c: Two cases to consider.

(INIT-T`) : Then c = C {i} = τ(C) for some C.
By (INIT-A⇒), σ′j = σj .
R1 6= • 6= R2, so vi) holds vacuously.
By Lemmas A.5 and 7.2, σ1 ∼Γ′

` σ2.
Now vii) and viii) follow from σ′j = σj .

(INIT-S-T`) : Same argument as in (INIT-T`) case.
Base i: No case to consider.

We now assume Lemma 7.8 holds for e, c and i with typing derivation height ≤ n. This is our induction hypothesis,
(IH). We must show that Lemma 7.8 holds for e, c and i with typing derivation height n+ 1.

Inductive step e: Three cases to consider.
(OP-T`) : Then e = e1 ⊕ e2 for some ei and some total operator ⊕.

Let 〈σj , e1〉 ⇒ 〈σ1j
, V1j
〉.

By i) we have that pc ` Γ {e1}Γ1 : `1 and pc t `1 ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where ` = `1 t `2.
By (IH), V1j

6= • = V1j̄
=⇒ `1 6v `, σ11

∼Γ1

` σ12
, and σ11

=` σ12
.

Three cases to consider for the values of V1j
(all other cases are either symmetric, or have a near-identical

argument).
V11

= •, V12
= •: iv) can only be established through (OP-EL⇒) for j = 1 and j = 2 , and by that rule,

Rj = V1j
= • and σ′j = σ1j

.
So vi) holds vacuously.
We have from earlier that σ11

=` σ12
and σ11

∼Γ1

` σ12
.

By Lemmas A.5 and 7.2, σ11 ∼Γ′
` σ12 .

Together, this gives vii) and viii).
V11

= •, V12
6= •: iv) can only be established through (OP-EL⇒) for j = 1 , and by that rule, R1 = V11

= •
and σ′1 = σ11

.
By (IH), we have V1j

6= • = V1j̄
=⇒ `1 6v `. Since `1 v `′ and V11

= • 6= V12
, we get `′ 6v `, so vi) holds.

Let 〈σ12 , e2〉 ⇒ 〈σ′2, V22〉.
This is established either through (OP-ER⇒) or (OP-EP⇒).
Regardless of which, since pc t `1 6v `, we get from Lemmas 7.7 and 7.7 that σ12

∼Γ′
` σ′2 and σ12

=` σ
′
2.

By Lemmas A.5 and 7.2, σ11
∼Γ′

` σ12
.

Together, this gives vii) and viii).
V11 6= •, V12 6= •: Then iv) was established by either (OP-ER⇒) or (OP-OK⇒).

Regardless of which, 〈σ1j , e2〉 ⇒ 〈σ′j , V2j 〉.
Since pc ` Γ {e1}Γ2 : `1, Lemmas 7.3 and 7.4 give us `dep Γ1, `dep σ1j

and Γ1 |=dep σ1j
.

By (IH), V2j 6= • = V2j̄
=⇒ `2 6v `, σ′1 ∼Γ′

` σ′2, and σ′1 =` σ
′
2.

So vii) and viii) hold.
vi) holds since Rj = • ⇐⇒ V2j

= • and `2 v `′.
(OP-P`) : Then e = e1 ⊕ e2 for some ei and some partial operator ⊕.

Let 〈σj , e1〉 ⇒ 〈σ1j , V1j 〉.
By i) we have that pc ` Γ {e1}Γ1 : `1 and pc t `1 ` Γ1 {e2}Γ′ : `2 for some Γ1 and `i where ` = `1 t `2.
By (IH), V1j 6= • = V1j̄

=⇒ `1 6v `, σ11 ∼Γ1

` σ12 , and σ11 =` σ12 .
Three cases to consider for the values of V1j

(all other cases are either symmetric, or have a near-identical
argument).
All cases and proofs thereof are the same as for (OP-T`), with the following addition:
V11
6= •, V12

6= •: as in (OP-T`), except i) could also have been established through (OP-EP⇒).
vii) and vii) are established through the same argument as in (OP-T`).
For vi), observe that lvl(e1) t lvl(e2) v `′.
If R1 6= R2, then either V11

6= V12
or V21

6= V22
(or both).

Since σ1 =` σ2 and σ11 =` σ12 , this difference can only occur if e1 or e2 has a variable or field with
security level ˆ̀ where ˆ̀ 6v `.
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But in that case, lvl(e1) t lvl(e2) 6v `. Thus `′ 6v `.
(FIELD`) : Then e = C.x for some C.x.

We have pc ` Γ {τ(C)}Γ′ : `′ by i).
Let 〈σj , τ(C)〉 ⇒ 〈σ′j , Ij〉.
By (IH), Ij 6= • = Ij̄ =⇒ `′ 6v `, σ′1 ∼Γ′

` σ′2 and σ′1 =` σ
′
2.

So vii) and viii) hold. As Rj = • ⇐⇒ Ij = •, vi) follows.
Inductive step c: Three cases to consider.

(INIT-F`) : Then c = C {i} = τ(C) for some C.
Also, Γ(C) = U.
By i) we have pc t Γc(C) t Γe(C) ` Γ[C 7→s B] {i}Γ′′[C 7→s B] : `C where Γ′ = Γ′′[C 7→ 〈I, pc, `C〉] and
`′ = `C t Γ′e(C).
Case on σj(C).
σ1(C) 6= U, σ2(C) 6= U: Then (INIT-A⇒) was used to establish iv), for j = 1 and j = 2.

By Lemmas A.5 and 7.2, σ1 ∼Γ′
` σ2.

Since σ′j = σj , vii) and viii) hold.
For vi) we must consider σj(C).
From ii) and Γs(C) = U, σj(C) 6= B.
If σ1(C) = σ2(C), R1 = R2, so vi) holds vacuously.
If σ1(C) 6= σ2(C), then σ1(C) = I, σ2(C) = • (or vice versa).
Then since σ′1 ∼Γ′

` σ′2, by Definition 7.5 pt. ??, Γ′e(C) 6v `.
By definition of `′, vi) holds.

σ1(C) = U, σ2(C) = U: Then (INIT-U⇒) was used to establish iv), for j = 1 and j = 2.
From v), σ1[C 7→ B] ∼Γ[C 7→sB]

` σ2[C 7→ B]
and σ1[C 7→ B] =` σ2[C 7→ B].
By ii), `dep Γ[C 7→s B], `dep σj [C 7→ B]
and Γ[C 7→s B] |=dep σj [C 7→ B].
By (INIT-U⇒), 〈σj [C 7→ B], i〉 ⇒ 〈σ′′j [C 7→ B], Tj〉,
with σ′j = σ′′j [C 7→ I(Tj)].
By (IH), we get that Tj 6= • = Tj̄ =⇒ `C 6v `,
σ′′1 [C 7→ B] ∼Γ′′[C 7→sB]

` σ′′2 [C 7→ B], and σ′′1 [C 7→ B] =` σ
′′
2 [C 7→ B].

This immediately gives us vi), since Rj = • ⇐⇒ Tj = • and `C v `′.
By further observing that σ′j(C) 6= U and `C v Γ′e(C), we get vii).
By (INIT`) (used to type i), `C v C.x, for all fields C.x of C.
So, even if σ′1(C) 6= σ′2(C), viii) still holds since then, `C 6v `.

σ1(C) = U, σ2(C) 6= U: Then (INIT-U⇒), resp. (INIT-A⇒), was used to establish iv) for j = 1, resp. j = 2 (or
vice versa).
By (INIT-U⇒) we have 〈σ1[C 7→ B], i〉 ⇒ 〈σ′′1 [C 7→ B], T1〉, with σ′1 = σ′′1 [C 7→ I(T1)] and R1 = • ⇐⇒ T1 = •.
By (INIT-A⇒), σ′2 = σ2 and R2 = I(σ2(C)).
By σ1 ∼Γ

` σ2, Γc(C) 6v `.
By Lemmas 7.7, Lemmas A.5 and 7.2, σ1 ∼Γ′

` σ′1.
By Lemma 7.7, σ1 =` σ

′
1.

By Lemmas A.5 and 7.2, σ1 ∼Γ′
` σ2.

For vii) and viii), by transitivity of ∼Γ′
` and =`, it remains only to show that σ2 ∼Γ′

` σ′2 and σ2 =` σ
′
2.

This follows from σ′2 = σ2.
Since Γs(C) = U, then by ii), σ2(C) 6= B.
By (INIT-U⇒), σ′1(C) 6= B.
If σ′1(C) = σ′2(C), vi) holds vacuously.
If σ′1(C) 6= σ′2(C), then either σ′1(C) = • or σ′2(C) = • (not both).
In the latter case, Γe(C) 6v `, so σ1 ∼Γ

` σ2 with Lemmas A.5 and 7.2 gives Γ′e(C) 6v `.
In the former case, Γ′e(C) 6v ` follows directly from vii).
So either way, Γ′e(C) 6v `.
Since Γ′e(C) v `′, vi) holds.

(INIT-S-FT`) : Argument similar in style as in (INIT-F`) case.
(INIT-S-FF`) : Argument similar in style as in (INIT-F`) case.

Inductive step i: One case to consider.
(INIT`) : Then i = C.x1 := e1; . . . ;C.xk := ek. Induction in k.
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Base: Here, k = 0. Then i = skip.
By (INIT`), Γ′ = Γ.
Only (SKIP⇒) can conclude iv).
(SKIP⇒) gives σ′j = σj .
So vii) and viii) holds by reflexivity of =` and ∼Γ′

` .
vi) holds vacuously as Rj = skip.

Inductive step: Assume Lemma 7.8 holds for k ≤ m.
This is our induction hypothesis (IH)k.
We must show that Lemma 7.8 holds for k = m+ 1.
Let 〈σj , C.x1 := e1; . . . ;C.xm := em〉 ⇒ 〈σmj

, Tmj
〉 (*)j .

By assumption i), we get that
⊔q−1

p=1 `p t pc ` Γq−1 {eq}Γq : `q for all q from 1 to m+ 1. Γ′ = Γm+1.
By (IH)k, Rj 6= • = R̄j =⇒ ⊔m−1

p=1 `p 6v `, σm1
∼Γm

` σm2
and σm1

=` σm2
.

By Lemmas A.5 and 7.2, σm1
∼Γ′

` σm2
.

By Lemma 7.3, `dep Γm.
By Lemma 7.4, Γm |=dep σm and `dep σm.
By Lemma 7.5, `err σmj

.
Three cases to consider for the values of Tmj

(all other cases are either symmetric, or have a near-identical
argument).
Tm1

= •, Tm2
= •: Then iv), for j = 1 and j = 2, were both established by (SEQ-E⇒).

So σ′j = σmj
.

Thus vii) and vii) follow from reflexivity of ∼Γ′
` and =`.

Since R1 = R2 = •, vi) holds vacuously.
Tm1 6= •, Tm2 = •: Then

⊔m−1
p=1 `p 6v `, so

⊔m−1
p=1 `p t pc 6v `.

By Lemma 7.6, `m 6v `.
Since `m v `′, `′ 6v `, so vi) holds.
iv), for j = 1 resp. j = 2, was established by (SEQ-OK⇒) resp. (SEQ-E⇒).
So σ′2 = σm2

, and thus by transitivity of ∼Γ′
` and =`,

σm1 ∼Γ′
` σ′2 and σm1 =` σ

′
2.

To show vii) and viii), by transitivity of ∼Γ′
` and =`, it remains only to be shown that σ′1 ∼Γ′

` σm1
and

σ′1 =` σm1 .
Let 〈σm1 , em+1〉 ⇒ 〈σe1 , Ve1〉.
By Lemmas 7.7 and 7.7, σm1

∼Γ′
` σe1

and σm1
=` σe1

.
Let 〈σe1

, C.xm+1〉 ⇒ 〈σC.x1
, VC.x1

〉 (*).
By i), Γs

p(C) = B.
Since Γm |=dep σe1 , σe1(C) = B.
So the only rule which can conclude (*) is (FIELD-OK⇒), which will only be able to use (INIT-A⇒) or
(INIT-S-A⇒).
In either case, σC.x1

= σe1
and VC.x = nC.x for some nC.x.

So σm1
=` σC.x1

and σm1
∼Γ′

` σC.x1
.

Since σ′1 = σC.x1
[C.x 7→ ne], and

⊔m−1
p=1 `p t pc 6v `, we get from i) that σm1

=` σ
′
1.

Since σ′1 and σC.x1
do not differ in initialization statuses, σm1

∼` σ
′
1.

So vii) and viii) holds by transitivity of =` and σ =` σ
′.

Tm1 6= •, Tm2 6= •: Then iv), for j = 1 and j = 2, were both established by (SEQ-OK⇒).
Let 〈σmj

, em+1〉 ⇒ 〈σej , Vej 〉.
By (IH), Vej 6= • = Vej̄ =⇒ `m+1 6v `,
σmj
∼Γ′

` σej and σmj
=` σej .

Since `m+1 v `′, vi) holds.
Three cases to consider for the values of Vej (all other cases are either symmetric, or have a near-
identical argument).
Ve1

= •, Ve2
= •: Then σ′j = σej , so vii) and viii) follow by transitivity of ∼Γ′

` and =`.
Ve1
6= •, Ve2

= •: Then σ′1 = σe1
.

Let 〈σe2 , C.xm+1〉 ⇒ 〈σC.x2 , VC.x2〉 (*).
By i), Γs

p(C) = B.
Since Γm |=dep σe2

, σe2
(C) = B.

So the only rule which can conclude (*) is (FIELD-OK⇒), which will only be able to use (INIT-A⇒)
or (INIT-S-A⇒).
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In either case, σC.x2
= σe2

and VC.x2
= nC.x2

for some nC.x2 .
So σe2 =` σC.x2 and σe2 ∼Γ′

` σC.x2 .
So vii) and viii) follow from transitivity of ∼Γ′

` and =`.
Ve1 6= •, Ve2 6= •: Let 〈σej , C.xm+1〉 ⇒ 〈σC.xj , VC.xj 〉 (*).

By i), Γs
p(C) = B.

Since Γm |=dep σej , σej (C) = B.
So the only rule which can conclude (*) is (FIELD-OK⇒), which will only be able to use (INIT-A⇒)
or (INIT-S-A⇒).
In either case, σC.xj = σej and VC.xj = nC.xj

for some nC.xj .
So σej =` σC.xj

and σej ∼Γ′
` σC.xj

.
So vii) and viii) follow from transitivity of ∼Γ′

` and =`.

Proof for s: By induction in the typing of s.

Base: Three cases to consider.
(SKIP`) : Then s = skip and Γ′ = Γ.

Only (SKIP⇒) can conclude iv).
(SKIP⇒) gives σ′j = σj .
So vii) and viii) holds by reflexivity of =` and ∼Γ′

` .
vi) holds vacuously as Rj = skip.

(VAR-A`) : Then s = x := e for some x and e.
Also, pc ` Γ {e}Γ′ : `′.
By Lemmas A.5 and 7.2, σ1 ∼Γ′

` σ2.
Two rules can conclude iv); Only (VAR-A⇒) and (E-E⇒).
Regardless of which is used, e is evaluated.
Let 〈σj , e〉 ⇒ 〈σej , Vej 〉.
By Lemma 7.8, Vej 6= • = Vej̄ =⇒ `′ 6v `, σe1

=` σe2
and σe1

∼Γ′
` σe2

.
Since Rj = • ⇐⇒ Vej = •, vi) holds.
Case on Vek . Three cases to consider (all other cases are either symmetric, or have a near-identical argument).
Ve1
6= • 6= Ve2

: Then iv), for both j = 1 and j = 2, was established through (VAR-A⇒).
By this rule, σ′j = σej [x 7→ Vej ].
By definition of ∼Γ′

` , σej ∼Γ′
` σ′j , so by transitivity, vii) holds.

Case on lvl(x).
lvl(x) 6v `: Then by definition of =`, σej =` σ

′
j , so by transitivity, viii) holds.

lvl(x) v `: Then since e is well-typed, lvl(e), pc, `′ v lvl(x).
So lvl(e) v lvl(x), and therefore, Ve1

= Ve2
.

Thus by definition of =`, σej =` σ
′
j , so by transitivity, viii) holds.

Ve1
= • = Ve2

: Then iv), for both j = 1 and j = 2, was established through (E-E⇒).
By this rule, σ′j = σej .
So by reflexivity and transitivity of =` and ∼Γ′

` , vii) and viii) hold.
Ve1
6= • = Ve2

: Then iv) for j = 1, resp. j = 2, was established through (VAR-A⇒), resp. (E-E⇒).
So, σ′1 = σe1

and σ′2 = σe2
[x 7→ Ve2

].
By definition of ∼Γ′

` (no class initialization status difference), σej ∼Γ′
` σ′j , so by transitivity, vii) holds.

Since Ve1 6= • = Ve2 , `′ 6v `.
So vi) holds.
By i), lvl(e), pc, `′ v lvl(x).
So lvl(x) 6v `.
Thus by definition of =`, σej =` σ

′
j , so by transitivity, viii) holds.

(FIELD-A`) : Then s = C.x := e for some C, x and e.
Also, pc ` Γ {e}Γe : `e and pc ` Γe {e}Γ′ : `C for some Γe, `e and `C such that `′ = `e t `C .
By Lemmas A.5 and 7.2, σ1 ∼Γe

` σ2 and σ1 ∼Γ′
` σ2.

Three rules can conclude iv); (E-E⇒), (FIELD-A-OK⇒), and (FIELD-A-E⇒).
Regardless of which is used, e is evaluated.
Let 〈σj , e〉 ⇒ 〈σej , Vej 〉.
By Lemma 7.8, Vej 6= • = Vej̄ =⇒ `e 6v `, σe1 =` σe2 and σe1 ∼Γe

` σe2 .
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By definition of `′, Vej 6= • = Vej̄ =⇒ `′ 6v ` holds.
Case on Vek . Three cases to consider (all other cases are either symmetric, or have a near-identical argument).
Ve1

= • = Ve2
: Then iv), for both j = 1 and j = 2, was established through (E-E⇒).

By this rule, σ′j = σej .
So by reflexivity and transitivity of =` and ∼Γ′

` , vii) and viii) hold.
Also, by (E-E⇒), Rj = •.
So vi) holds vacuously since R1 = • = R2.

Ve1
6= • 6= Ve2

: Then iv), for both j = 1 and j = 2, was established through either (FIELD-OK⇒) or (FIELD-E⇒).
Regardless of which, C.x is evaluated.
Let 〈σej , C.x〉 ⇒ 〈σC.xj , VC.xj 〉.
By Lemma 7.8, VC.xj

6= • = VC.xj̄
=⇒ `C.x 6v `, σC.x1

=` σC.x2
and σC.x1

∼Γ′
` σC.x2

.
By definition of `′, VC.xj 6= • = VC.xj̄

=⇒ `′ 6v ` holds.
Case on VC.xk

. Three cases to consider (all other cases are either symmetric, or have a near-identical
argument).
VC.x1 = • = VC.x2 : Then iv), for both j = 1 and j = 2, was established through (FIELD-A-E⇒).

By this rule, σ′j = σC.xj .
So by reflexivity and transitivity of =` and ∼Γ′

` , vii) and viii) hold.
Also, by (FIELD-A-E⇒), Rj = •.
So vi) holds vacuously since R1 = • = R2.

VC.x1
6= • 6= VC.x2

: Then iv), for both j = 1 and j = 2, was established through (FIELD-OK⇒).
By this rule, σ′j = σC.xj

[C.x 7→ Vej ].
By definition of ∼Γ′

` , σC.xj ∼Γ′
` σ′j , so by transitivity, vii) holds.

Case on lvl(C.x).
lvl(C.x) 6v `: Then by definition of =`, σC.xj =` σ

′
j , so by transitivity, viii) holds.

lvl(C.x) v `: By i), lvl(e), pc t `e, `′ v lvl(C.x).
So lvl(e) v lvl(C.x), and therefore, Ve1

= Ve2
.

Thus by definition of =`, σej =` σ
′
j , so by transitivity, viii) holds.

Also, by (FIELD-A-E⇒), Rj = skip.
So vi) holds vacuously since R1 6= • 6= R2.

VC.x1
6= • = VC.x2

: Then iv), for j = 1, resp. j = 2, was established through (FIELD-A-OK⇒), resp.
(FIELD-A-E⇒).
So, σ′1 = σC.x1 and σ′2 = σC.x2 [C.x 7→ Ve2 ].
By definition of ∼Γ′

` (no class initialization status difference), σC.xj ∼Γ′
` σ′j , so by transitivity, vii) holds.

Since VC.x1
6= • = VC.x2

, `C 6v `.
So by definition of `′, `′ 6v `, so vi) holds.
By i), lvl(e), pc t `e, `′ v lvl(C.x).
Since `C 6v `, lvl(C.x) 6v `.
Thus by definition of =`, σC.xj =` σ

′
j , so by transitivity, viii) holds.

Ve1
6= • = Ve2

: Then iv), for j = 1, was established through either (FIELD-A-OK⇒) or (FIELD-A-E⇒), and iv),
for j = 2, was established through (E-E⇒).
So, σ′2 = σe2 .
Since Ve1

6= • = Ve2
, `e 6v `.

By definition of `′, `′ 6v `, so vi) holds.
Regardless of which of (FIELD-A-OK⇒) and (FIELD-A-E⇒) were used to establish iv) for j = 1, C.x is
evaluated.
Let 〈σe2 , C.x〉 ⇒ 〈σC.x2 , VC.x2〉.
Depending on the value of VC.x2 , either σ2 = σC.x2 or σ2 = σC.x2 [C.x 7→ Ve2 ].
Since C.x is evaluated under context pct `e, we get by Lemmas 7.7 and 7.7 that σe2 ∼Γ′

` σ′2 and σe2 =` σ
′
2,

regardless of which of these two possible instances of σ′j we have.
So, by reflexivity and transitivity of ∼Γ′

` and =`, vii) and viii) hold.
Inductive step: Induction hypothesis:

(IHs): Assume the result holds for all s′ structurally smaller than s.
We proceed by case on the typing of s.
(SEQ`) : Then s = s1; s2 for some s1 and s2.

By i), pc ` Γ {s1}Γ1 : `1 and pc t `1 ` Γ1 {s2}Γ′ : `2, where `′ = `1 t `2.
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By Lemmas A.5 and 7.2, σ1 ∼Γ1

` σ2 and σ1 ∼Γ′
` σ2.

Two rules can conclude iv); (SEQ-OK⇒) and (SEQ-E⇒).
Regardless of which is used, s1 is evaluated.
Let 〈σj , s1〉 ⇒ 〈σs1j

, Ts1j
〉.

By (IH)s, Ts1j
6= • = Ts1 j̄

=⇒ `1 6v `, σs11
=` σs12

and σs11
∼Γ1

` σs12
.

By definition of `′, Ts1j
6= • = Ts1 j̄

=⇒ `′ 6v ` holds.
By Lemmas 7.3, 7.4 and 7.5, (`dep Γ1), (`dep σs1j

), (Γ1 |=dep σs1j
) and (`err σs1j

).
Case on Ts1j

. Three cases to consider (all other cases are either symmetric, or have a near-identical argument).
Ts11

= • = Ts12
: Then iv), for j = 1 and j = 2, was established through (SEQ-E⇒).

So, σ′j = σs1j
.

Thus vii) and viii) hold.
Since R1 = • = R2, vi) holds vacuously.

Ts11
6= • 6= Ts12

: Then iv), for j = 1 and j = 2, was established through (SEQ-OK⇒).
In both runs, s2 is evaluated.
Let 〈σs1j

, s2〉 ⇒ 〈σs2j
, Ts2j

〉.
By (SEQ-OK⇒), σj = σs2j

.
By (IH)s, Ts2j

6= • = Ts2 j̄
=⇒ `2 6v `, σs21

=` σs22
and σs21

∼Γ′
` σs22

.
Thus vii) and viii) hold.
By definition of `′, Ts1j

6= • = Ts1 j̄
=⇒ `′ 6v ` holds.

Since Rj = Ts2j
, vi) holds.

Ts11
6= • = Ts12

: Then iv), for j = 1, resp. j = 2, was established through (SEQ-OK⇒), resp. (SEQ-E⇒).
So σ′2 = σs12

Since Ts11
6= • = Ts12

, `1 6v `, and thus `′ 6v `, holds, so vi) holds.
The j = 1 run evaluates s2.
Let 〈σs11

, s2〉 ⇒ 〈σs21
, Ts21

〉.
We have σ′1 = σs21

.
Since `1 6v ` holds, and therefore pc t `1 6v `, by Lemmas ?? and ??, σs11

∼Γ′
` σ′1 and σs11

=` σ
′
1.

By reflexivity and transitivity of ∼Γ
` and =`, vii) and viii) hold.

(IF`) : Then s = if e then s1 else s2 for some e, s1 and s2.
By i), pc ` Γ {e}Γ0 : `e and pc t lvl(e) t `e ` Γ0 {sk}Γk : `k for k = 1 and k = 2, with Γ′ = Γ1 � Γ2 and
`′ = `e t `1 t `2
Three rules can conclude iv), for both j = 1 and j = 2; (E-E⇒), (IF-F⇒) and (IF-T⇒).
Regardless of which is used, e is evaluated.
Let 〈σj , e〉 ⇒ 〈σej , Vej 〉.
By Lemma 7.8, Vej 6= • = Vej̄ =⇒ `e 6v `, σe1 =` σe2 and σe1 ∼Γ0

` σe2 .
By Lemmas A.5 and 7.2, σe1

∼Γ1

` σe2
, σe1

∼Γ2

` σe2
and σe1

∼Γ′
` σe2

(since Γc
k v Γ′c and Γe

k v Γ′e).
By definition of `′, Vej 6= • = Vej̄ =⇒ `′ 6v ` holds.
By Lemmas 7.3, 7.4 and 7.5, (`dep Γ0), (`dep σej ), (Γ0 |=dep σej ) and (`err σej ).
Case on Vej . Three cases to consider (all other cases are either symmetric, or have a near-identical argument).
Ve1

= • = Ve2
: Then iv), for both j = 1 and j = 2, was established through (E-E⇒).

By this rule, σ′j = σej .
So by reflexivity and transitivity of =` and ∼Γ′

` , vii) and viii) hold.
Also, by (E-E⇒), Rj = •.
So vi) holds vacuously since R1 = • = R2.

Ve1
6= • 6= Ve2

: Then iv), for both j = 1 and j = 2, was established through either (IF-F⇒) or (IF-T⇒).
The rule used depends on the value of Vej . Case on Vej .
Ve1

= 0 = Ve2
Then iv), for both j = 1 and j = 2, was established through (IF-F⇒).

In both runs, s2 is evaluated.
So 〈σej , s2〉 ⇒ 〈σ′j , Rj〉.
By (IH)s, Rj 6= • = Rj̄ =⇒ `2 6v `, σ′1 =` σ

′
2 and σ′1 ∼Γ′

` σ′2, so vii) and viii) hold.
Since `2 v `′, vii) holds.

Ve1 6= 0 6= Ve2 Then iv), for both j = 1 and j = 2, was established through (IF-T⇒).
In both runs, s1 is evaluated.
So 〈σej , s1〉 ⇒ 〈σ′j , Rj〉.
By (IH)s, Rj 6= • = Rj̄ =⇒ `1 6v `, σ′1 =` σ

′
2 and σ′1 ∼Γ′

` σ′2, so vii) and viii) hold.
Since `1 v `′, vii) holds.
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Ve1
6= 0 = Ve2

Then iv), for both j = 1, resp. j = 2, was established through either (IF-F⇒) or (IF-T⇒).
So 〈σej , skj 〉 ⇒ 〈σ′j , Rj〉, with k1 6= k2.
Since Ve1 6= Ve2 and σe1 =` σe2 , lvl(e) 6v `.
Since s1 and s2 would both be run under context pc t lvl(e)t `e, we get from Lemmas 7.7 and 7.7 that
σej ∼Γ′

` σ′j and σej =` σ
′
j , regardless of which of (IF-F⇒) and (IF-T⇒) is used to prove iv) for j = 1

and j = 2.
So vii) and viii) both hold.
By Lemma 7.6, we get that pc t lvl(e) t `e v `k. So `′ 6v `. Thus vi) holds.

Ve1
6= • = Ve2

: Then iv), for j = 2, was established through (E-E⇒), and iv), for j = 1, was established
through either (IF-F⇒) or (IF-T⇒).
So σ′2 = σe2

.
Since Ve1

6= • = Ve2
, `e 6v ` and `′ 6v `, so vi) holds.

Also, 〈σe1 , sk1〉 ⇒ 〈σ′1, R1〉, with k1 ∈ {1, 2}.
Since s1 and s2 would both be run under context pc t lvl(e) t `e, we get from Lemmas 7.7 and 7.7 that
σe1 ∼Γ′

` σ′1 and σe1 =` σ
′
1, regardless of which of (IF-F⇒) and (IF-T⇒) is used to prove iv) for j = 1.

So vii) and viii) both hold by reflexicity and transitivity of ∼Γ′
` and =`.

(TRY`) : Then s = try st catch sc for some st and sc.
By i), pc ` Γ {s}Γt : `t and pc t `t ` Γ� Γt {sc}Γc : `′, with Γ′ = Γt � Γc.
Two rules can conclude iv), for both j = 1 and j = 2; (TRY-E⇒) and (TRY-OK⇒).
Regardless of which is used, st is evaluated.
Let 〈σj , st〉 ⇒ 〈σstj , Tstj 〉.
By (IH)s, Tstj 6= • = Tstj̄ =⇒ `t 6v `, σst1

=` σst2
and σst1

∼Γt

` σst2
.

By Lemmas A.5 and 7.2, σst1
∼Γ�Γt

` σst2
, σst1

∼Γc

` σst2
and σst1

∼Γ′
` σst2

(since Γc
t v (Γ� Γt)

c, Γe
t v (Γ� Γt)

e,
Γc
c v Γ′c and Γe

t v Γ′e).
By Lemmas 7.3, 7.4 and 7.5, (`dep Γt), (`dep σstj ), (Γt |=dep σstj ) and (`err σstj ).
Since (Γ� Γt)

s = Γs, (`dep Γ� Γt), and (Γ� Γt |=dep σstj ).
Case on Tstj . Three cases to consider (all other cases are either symmetric, or have a near-identical argument).
Tst1

6= • 6= Tst2
: Then iv), for both j = 1 and j = 2, was established through (TRY-OK⇒).

So σ′j = σstj .
Thus vii) and viii) follow from reflexivity and transitivity of ∼Γ′

` and =`.
Since Rj = Tstj 6= •, vi) holds vacuously.

Tst1
= • = Tst2

: Then iv), for both j = 1 and j = 2, was established through (TRY-E⇒).
In both runs, sc is evaluated.
So 〈σstj , sc〉 ⇒ 〈σ′j , Rj〉.
By (IH)s, Rj 6= • = Rj̄ =⇒ `′ 6v `, σ′1 =` σ

′
2 and σ′1 ∼Γc

` σ′2, so vi), vii) and viii) hold.
Tst1

6= • = Tst2
: Then iv), for j = 1, resp. j = 2, was established through (TRY-OK⇒), resp. (TRY-E⇒).

So, σ′1 = σst1
, R1 = T1 = skip and 〈σst2

, sc〉 ⇒ 〈σ′2, R2〉.
Since Tst1

6= • = Tst2
, `t 6v `.

So by Lemma 7.6, if R2 = •, `′ 6v `. So vi) holds.
As for j = 1, since sc is evaluated under context pc t `t, we get from Lemmas 7.7 and 7.7 that σst1

∼Γc

` σ′1
and σst1

=` σ
′
1.

Since Γc
t v Γc

c and Γe
t v Γe

c, σst1
∼Γ′

` σ′1 holds.
So vii) and viii) both hold by reflexicity and transitivity of ∼Γ′

` and =`.
(WHILE`) : Then ŝ = while e do s, for some e and s.

Well-typing of arbitrarily long es-sequence:
By i), pcei ` Γ̂i {e} Γ̂′i : `ei and pcsi ` Γ̂′i {s} Γ̂i+1 : `si ,
where pcei = pc t `′i, pcsi = pc t `′i t `ei t lvl(e),
`′0 = ⊥, `′i+1 = `′i t `ei t `si ,
i = 0..n, (Γ̂n, `

′
n) = (Γ̂n+1, `

′
n+1),

`′ = `′n, Γ = Γ̂0 and Γ′ =
⊙n

j=0 Γ̂′j � Γ̂j+1.
From this, and since the type system is deterministic,
we have for all k′ > n that (Γ̂k′ , `

′
k′) = (Γ̂k′−1, `

′
k′−1).

By transitivity, (Γ̂k′ , `
′
k′) = (Γ̂n, `

′
n).

So pcek′ ` Γ̂k′ {e} Γ̂′k′ : `ek′ and pcsk′ ` Γ̂′k′ {s} Γ̂k′+1 : `sk′ , for k′ ≥ 0.
By Lemma 7.3, for all k′ ≥ 0, `dep Γ′k and `dep Γk+1.
Notation for sequence of es evaluations:
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Let j = 1..2 and

tk =

{
e , if k is even
s , otherwise

σj0 = σj0

〈σjk, tk〉 ⇒ 〈σj ′k, Rjk〉
σjk+1 = σj

′
k

Tjk =

{
• , if Rjk = •
skip , if Rjk = 0

pck =

{
pcek/2

, if k is even
pcsk−1/2

, otherwise

`k =

{
`ek/2

, if k is even
`sk−1/2

, otherwise

Γk =

{
Γ̂k/2 , if k is even
Γ̂′k−1/2

, otherwise

Γ′k = Γk+1

Then pck ` Γk {tk}Γ′k : `k.
Also, `k v pck̂, for all k̂ > k.
Furthermore, `k v `′, for all k.
Pairwise memory equivalence:
Like in the proof of Lemma 7.7 for s, we have that, for both j,
then σ′j = σj

′
k for the least k for which Tjk is defined.

Note that Tjk is defined for at least one value of k, by v).
To establish σ′1 =` σ′2 and σ′1 ∼` σ′2, we first prove the following, for all k, assuming σ1k =` σ2k and
σ1k ∼` σ2k.

σ1k+1 =` σ2k+1 ∧ σ1k+1 ∼` σ2k+1 (3)

To establish this, we will need to use

pck ` Γk {tk}Γ′k : `k `dep Γk `dep σjk Γk |=dep σjk `err σjk (1)

We have already established pck ` Γk {tk}Γ′k : `k and `dep Γk for all k.
We now establish `dep σjk, Γk |=dep σjk and `err σjk for all k.
So, with k arbitrary, assuming (1), we must show

`dep σjk+1 Γk+1 |=dep σjk+1 `err σjk+1 (2)

(2) follows directly from Lemmas 7.4 and 7.5.
We now prove (3), for all k.
With k arbitrary, assume σ1k =` σ2k, σ1k ∼` σ2k and (1).
By Lemma 7.8 for a (in case tk = e), or (IH) (in case tk = s),
σ1k+1 =` σ2k+1 and σ1k+1 ∼` σ2k+1.
So (3) holds.
Component-wise memory equivalence under 6v ` contexts:
Another result that we will need is the following.

pck 6v ` =⇒ σjk =` σjk+1 ∧ σjk ∼` σjk+1 (4)

Assume (1).
Assume pck 6v `.
By Lemma 7.7,
σjk =` σjk+1 and σjk ∼` σjk+1.
So (4) holds.
Towards vi), vii) and viii):
By Lemma 7.8 for a,
σ11 =` σ21 and σ11 ∼` σ21.
By Lemma A.8, σjk = σj

′
k = σjk+1 for even k.
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Let kj be least such that Tjkj
is defined.

Assume wlg. that k1 ≤ k2.
Two cases to consider:
tk1

= s: Then R1k1
= •; else contradicting the definition of T1k1

.
Case on R2k1

R2k1
= •: Then k1 = k2 =: k and σ′j = σj

′
k.

So vii) and viii) hold, and vi) holds vacuously.
R2k1

= skip: Then by (IH), `k1 6v `.
Since `k1 v `′, `′ 6v `.
So vi) holds (regardless of whether R1 and R2 differ or not).
For all k̂ > k1, since `k1

v pck̂, pck̂ 6v `.
By (4), σ2k1

=` σ2k2
and σ2k1

∼` σ2k2
.

Thus σ1k1
=` σ2k2

and σ1k1
∼` σ2k2

.
So vii) and viii) hold.

tk1
= e: Then R1k1

∈ {0, •}.
We prove the R1k1

= 0 case, since the proof of the R1k1
= • case is obtained by swapping the proofs of

the first two cases in the following case distinctions on R2k1
and R2k2

.
Case on R2k1

.
R2k1

= 0: Then k1 = k2 =: k and σ′j = σj
′
k.

So vii) and viii) hold, and vi) holds vacuously.
R2k1

= • Then k1 = k2 =: k and σ′j = σj
′
k.

So vii) and viii) hold.
We also have `k 6v `.
Since `k v `′, we get `′ 6v `.
So vi) holds.

R2k1
6∈ {0, •}: Then lvl(e) 6v `; else contradicting σ1k1

=` σ2k1
.

Since R1k1
= 0, tk1 = e, so k1 is even.

Let k̂ range over k1 + 1 + 2m, for nonnegative integer m.
(So k̂ ranges over all odd integers ≥ k1).
Then tk̂ = s, for all k̂.
Since lvl(e) v pck̂, we get by (4) that σ2k̂ =` σ2k̂+1 and σ2k̂ ∼` σ2k̂+1.
Since we already have by Lemma A.8 that σjk = σj

′
k = σjk+1 for even k,

we get σ2k1
=` σ2k2

and σ2k1
∼` σ2k2

.
By transitivity, σ1k1

=` σ2k2
and σ1k1

∼` σ2k2
.

So vii) and viii) hold.
Case on tk2

.
tk2 = e: Case on R2k2

.
R2k2

= 0: Then vi) holds vacuously.
R2k2

= •: Then, since σ2k1
=` σ2k2

and σ2k1
∼` σ2k2

,
since σ2k1

v σ2k2
,

and thus since Γk1
|=dep σ2k2

,
we get by Lemma 7.8 for a that `k1

6v `.
Since `k1

v `′, `′ 6v `.
So vi) holds.

tk2
= s: Then R2k2

= •; else contradicting that T2k2
is defined.

Since lvl(e) v pck2
and lvl(e) 6v `,

we get by Lemma 7.7 that `k2
6v `.

Since `k2 v `′, `′ 6v `.
So vi) holds.

This concludes the proof.


