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Securing Class Initialization in Java-like
Languages

Willard Rafnsson, Keiko Nakata, and Andrei Sabelfeld

Abstract—Language-based information-flow security is concerned with specifying and enforcing security policies for information flow
via language constructs. Although much progress has been made on understanding information flow in object-oriented programs, little
attention has been given to the impact of class initialization on information flow. This paper turns the spotlight on security implications
of class initialization. We reveal the subtleties of information propagation when classes are initialized, and demonstrate how these
flows can be exploited to leak information through error recovery. Our main contribution is a type-and-effect system which tracks these
information flows. The type system is parameterized by an arbitrary lattice of security levels. Flows through the class hierarchy and
dependencies in field initializers are tracked by typing class initializers wherever they could be executed. The contexts in which each
class can be initialized is tracked to prevent insecure flows of out-of-scope contextual information through class initialization statuses
and error recovery. We show that the type system enforces termination-insensitive noninterference.

Index Terms—Information Flow Control, Program Analysis.
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1 INTRODUCTION

LANGUAGE-based concepts and techniques are be-
coming increasingly popular in the context of se-

curity [Koz99], [SMH00], [WAF00], [SM03], [Ler03],
[MSL+08], [Cro09], [Fac09] because they provide an
appropriate level of abstraction for specifying and en-
forcing application and language-sensitive security poli-
cies. Popular examples include: i) Java stack inspec-
tion [WAF00], which enforces a stack-based access-
control discipline, ii) Java bytecode verification [Ler03],
which traverses bytecode to verify type safety, and iii)
web languages such as Caja [MSL+08], ADsafe [Cro09],
and FBJS [Fac09], which use program transformation and
language subsets to enforce sandboxing and separation
properties.

Language-based information-flow security [SM03] is
concerned with specifying and enforcing security poli-
cies for information flow via language constructs. There
has been much recent progress on understanding in-
formation flow in languages of increasing complex-
ity [SM03], and, consequently, information-flow secu-
rity tools for languages such as Java, ML, and Ada
have emerged [MZZ+10], [Sim03], [Sys10]. In par-
ticular, information flow in object-oriented languages
has been an area of intensive development [Mye99],
[BS99], [BCG+02], [ABF03], [BFLM05], [BN05], [ABB06],
[Nau06], [BRN06], [HS09]. However, it is surprising that
the impact of class initialization, being an important
aspect of object-oriented programs, has received scarce
attention in the context of security. In a language like
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Java, class initialization is lazy: classes are loaded as they
are first used. This introduces challenges for information-
flow tracking, in particular when class initialization may
trigger initialization of other classes, which, for exam-
ple, may include superclasses. Additional complexity is
introduced by exceptions raised during initialization, as
these can be exploited to leak secret information.

Because of its power, Java’s class loading mecha-
nism [LB98] is a target for our model. A class is loaded,
linked and initialized lazily on demand upon first ac-
tive use [LY99]1. Moreover the programmer may define
application-specific loading policies. Class loading con-
stitutes one of the most compelling features of the Java
platform.

This paper turns the spotlight on security implica-
tions of class initialization (and loading and linking –
prerequisites for initialization). We discuss the subtleties
of information propagation when classes are initialized.
The key issue is that class initialization may perform side
effects (such as opening a file or updating the memory).
The side effects may be exploited by the attacker who
may deduce from these side effects which classes have
(not) been initialized, which is sometimes sufficient to
learn secret information.

We propose a formalization that illustrates how to
track information flow in presence of class initialization
by a type-and-effect system for a simple language. By
ensuring that the initialization (or success thereof) of a
class containing public fields in no way depends on the
evaluation of an expression (or success thereof) contain-
ing secret data, the type-and-effect system guarantees
security in a form of noninterference [GM82]. Informally,
noninterference guarantees that a program’s public out-

1. The JVM specification permits the large flexibility as to the timing
of loading and linking. But these activities must appear as if they
happen on the class’s (or interface’s) first active use.
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puts are independent of secret inputs. A key intricacy
here is that of class dependencies: An initialization of
one class can cause the initialization of other classes. The
only approach we are aware of that actually considers
class initialization in the context of information-flow
security is Jif [Mye99], [MZZ+10]. However, Jif’s restric-
tions on initialization code are rather severe: only simple
constant manipulations, which cannot raise exceptions,
are allowed. Our treatment of class initialization is more
liberal than Jif’s and yet we demonstrate that it is secure.
We argue that this liberty is desirable in scenarios such
as server-side code.

2 BACKGROUND

This section presents informal considerations that lead
to a formalization in following sections. For illustration
purposes, we use a simple subset of Java with classes
that contain static fields. We assume variables and fields
are partitioned into high (secret) and low (public), de-
pending on the confidentiality of values they store. We
assume that l and h are low and high variables, respec-
tively. The goal is to prevent programs from leaking ini-
tial values of secret variables and fields, into final values
of public variables and fields. The context corresponds to
a body of a conditional or loop. This context is high if the
guard depends on a secret (i.e., contains a secret variable
or field) and low otherwise. Consider the following class
definitions, with D.x and C.y low .

class C { y = 1 }
class D { x = 1/C.y }

Certainly the above definitions may be considered secure
since no high data is involved. However, an attempt to
instantiate an object of D may cause an information leak:

C.y := 0;
if h 6= 0 then new D else skip

Except when h has the value 0 initially, the above
program results in an error, since an initialization of class
D is attempted. The object creation, should it occur, is
the first active use of D. This triggers initialization of D.
When a class is initialized, all its field - (field-)initializer
assignments are executed in the state in which the first
active use of the class occurred. Here, D.x := 1/C.y is
performed in a state where C.y = 0, so a division by 0
occurs, producing an error. Note that in the terminology
we have introduced, the initialization occurs in a high
context. The attacker learns about the secret value of h
by observing the termination behavior. It is illustrative
to compare the above program that leaks through termi-
nation behavior with the following one that does not:

new D;
C.y := 0;
if h 6= 0 then new D else skip

In this latter program, D is initialized before it is used in
a high context, so running the second new D statement
does not incur any initialization activities.

In Java, when initialization of a class has completed
abnormally, an exception is thrown and the class is
marked as erroneous. Initialization of a class in an
erroneous state is not possible [LY99, Ch. 2]2. This makes
initialization failure persistent throughout a run in the
sense that when initialization of a class failed on it
first (active) use, then it will fail on any future use
irrespective of the state in which the second initialization
is attempted3. Catching initialization errors introduces
a delicate scenario of information leaks. For instance,
consider the following program:

C.y := 0;
if h 6= 0 then (try new D catch skip) else skip;
C.y := 1;
new D

Again, the above program results in an error except
when h has the value 0 initially. In effect, information
from h flows out of the scope of the if, through the
initialization status of D, into the termination behaviour
of the last statement. The next variation of the example
shows how to exploit this flow so that the resulting
program always terminates normally and reflects the
initial value of h in the final value of l. Standard security
type systems (e.g., [Mye99], [PS03], [HS06], [AS09]) allow
liberate handling of exceptions raised by expressions that
are independent of secret data, as long as these expres-
sions are used in public context. Since seemingly neither
class definitions of C nor D involves high variables, one
may be tempted to consider possible errors caused by
initializing D as low. However, Program pmain, given
below, illustrates the subtlety of the problem:

C.y := 0;
if h 6= 0 then (try new D catch skip) else skip;
C.y := 1; l := 0;
try new D catch l := 1

The above program successfully terminates irrespective
of the initial value at h, and the final value at l indicates
whether h was nonzero or not.

Leaks like these can easily occur in practise; con-
sider the Java program in Figure 1. Here, class D,
originating from [Bil], implements the Singleton design
pattern through the ”initialization on demand holder”
idiom, which is thread-safe (as opposed to using double-
checked locking [Sch97]). To achieve thread-safety, this
implementation leaves it to the class loader to construct
the instance of D by calling the constructor in a field
initializer. Since the class initialization phase is guaran-
teed to be serial [GJS96, Section 12.4], no race conditions
occur, so only one instance of D is ever created. How-
ever, the class dependencies in this program are exactly
the same as those in pmain, so in exactly the same way

2. To be precise, the Class object representing the class is labeled as
erroneous.

3. Initialization may recover for instance by resorting to garbage
collection. But normally a class is eligible for unloading when the
running application has no reference to the class.
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Source File

import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class SingletonExample{

static class D{ // Singleton
private static final D INST = new D();
public int x;
public D(){

x = 1 / C.y; // fails if C.y=0
}
public static D getInstance(){

return INST;
}

}
static class C{
public static int y = 1;

}
public static void main(String[] a)
throws IOException{
int l = 0;
System.out.print("h = "); // input (high)
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));
int h = Integer.parseInt(in.readLine());
C.y = 0;
if (h == 0){

try{
D.getInstance(); // fails if h=0

} catch (LinkageError e){}
}
C.y = 1;
try{

D.getInstance(); // fails if h=0
} catch(LinkageError e){

l = 1; // run if h=0
}
System.out.println("l = " + l);// output (low)

} // 1 iff h = 0
}

Program Execution

$ javac SingletonExample.java

$ java SingletonExample
h = 0
l = 1

$ java SingletonExample
h = 42
l = 0

Fig. 1: Singleton Example in Java

that one bit of the initial value of h is reflected in l after
execution of pmain, one bit of the high input is reflected
in the low output of the program in Figure 1.

Dependencies in class definitions can impact security:
before a class C is initialized, for each field and initializer
C.x := e in C, for each D.y occurring in e, D is
initialized. We say C depends on all these classes. If,
when initializing C, initialization of any class D which
C depends on fails, then initialization of C fails. For
instance, consider the class definitions below, involving
only low fields.

class C { y = 1 }
class D0 { x = 1/C.y }
class D1 { x = D0.x }

pdep, given below, always terminates normally and re-
flects secret input values in public results.

C.y := 0;
if h 6= 0 then (try new D0 catch skip) else skip;
C.y := 1; l := 0;
try new D1 catch l := 1

Class hierarchies impact security as well, since if a class
C is a subclass of a class D, then C depends on D.
So replacing the definition of D1 with the following
definition of D1 in the class table above yields the same
insecure flow in Program pdep.

class D1 extends D0 {}

The bottom line is that class initialization may per-
form side effects, causing information to leak. Languages
which lazily intialize static classes, and where initializa-
tion failure is persistent, have this information channel.
This includes Java (as seen above) and C# (example in
the associated technical report [RNS11]), but excludes
C++ (no non-constant field initializers), VB.NET (no
static class fields), Smalltalk (no field initializers), Ruby
and Python (classes are objects, and failure is not per-
sistent). One rather conservative approach to securing
class initialization is to eliminate any possibilities of
side effects during initialization and disallow errors due
to initialization to be caught, an approach taken in
Jif [Mye99], [MZZ+10]. This approach rules out, among
other, read and write access to instance as well as static
fields, method calls and object creation during initializa-
tion. For example, a static field of a reference type may
only be initialized to null, which would exclude some
standard Java APIs [Sun], such as (java.lang.)Boolean and
String, etc. Indeed Jif restricts (class) field initializers to
simple constant manipulation that may not raise any
exceptions. This makes the particular implementation of
the Singleton pattern given in Figure 1 impossible in Jif.
While it is rarely good practice to catch errors within
ordinary methods, such as methods in libraries, there
are several scenarios where this is good practice, e.g. in
server applications to avoid crashing the entire system
due to third party applications or to log messages. An
example from practice where errors are caught and
rethrown as exceptions can be found in [Exc].

This paper proposes and formalizes a different ap-
proach: we allow side effects during initialization, as
long as these do not cause insecure flows. This paper ex-
tends and improves an earlier conference version [NS10].
The enforcement mechanism in the conference version
disallows class initializations in secret contexts alto-
gether, does not consider class dependencies, and uses
a fixed lattice of security levels. These limitations are
resolved in the present version: we present a more
permissive type-and-effect system which is furthermore
parameterized by an arbitrary lattice of security levels.
We track flows through dependencies in the class hier-
archy and in field initializers, and track every context in
which each class can be initialized in, to prevent the kind
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of leak demonstrated in program pmain. Finally, we prove
that our type system soundly enforces a termination-
insensitive notion of noninterference (TINI).

Section 5 develops a type-and-effect system for track-
ing information flows in a simple language with classes,
defined in Section 3 (class hierarchies added in Sec-
tion 6). We show in Section 7 that the type-and-effect
system enforces TINI, given in Section 4. Sections 8
discusses related work, and Section 9 concludes.

3 LANGUAGE

We define the language for our formal study by the
following abstract syntax:

Expression e ::= n | x | e⊕ e | C.x
Statement s ::= skip | s; s | x := e | C.x := e

| if e then s else s
| try s catch s | while e do s

Class definition c ::= C {i} | C <:C {i}
Field definitions i ::= (x = e)∗

Class table τ ::= c∗

Metavariables x, n, ⊕ and C range over variables, in-
tegers, operators and class names respectively. Notation
C.x denotes field x of class C. Compound expressions
are built using binary (integer arithmetic) operators,
ranged by metavariable ⊕. We assume a collection of
such operators, partitioned into partial and total oper-
ators, ranged by ⊕P and ⊕T respectively. Total, resp.
partial, operators are represented as functions mapping
into Z, resp. Z ∪ {•}, if both operands are integers, and
into {•} if either operand is •. The case n1⊕Pn2 = • rep-
resents the scenario where ⊕P is undefined on (n1, n2).
So, here, • denotes an evaluation error as a result of
an undefined partial operator application. The notation
(x = e)∗ denotes a possibly empty sequence of x = e.
The notation c∗ is similar. Our class definition notation
is a compacted version of the one seen in the previous
section; C {x0 = e0 . . . xk = ek} declares a class named C
consisting of the fields xi and field initializers ei. Instead
of modeling arbitrary statement execution during class
initialization, we include only the minimum constructs
required for flows through class initialization statuses to
occur. We assume i 6= j =⇒ xi 6≡ xj in the following.
When C extends C ′ (C a subclass of C ′, C inherits
from C ′), we instead write C <:C ′ {x0 = e0 . . . xk =
ek} (<: is the subtype relation). We sometimes write
x0 = e0 . . . xk = ek as x0 = e0; . . . ;xk = ek when
this helps readability. If i = ε in C {i} and C <:C ′ {i},
then C has no fields. We write these definitions as C {}
and C <:C ′ {}. A class table τ is a (finite) list of class
definitions. We interpret τ as a function mapping a class
name C to the class definition in τ named C. Formally,
the function is defined by induction on τ as follows.

(cτ)(C) =

{
c if ∃C ′, i . c ∈ {C {i}, C <:C ′ {i}},
τ(C) otherwise.

A program is a pair (τ, s) of a class table and a statement.
We let P range over programs. To lighten notation in our
formal study, we assume a fixed τ hereafter.

The following syntactic categories, not part of the
language syntax, arise during program execution.

Initialization status S ::= U | B | I | •
Initialization result I ::= B | I | •
Value V ::= n | •
Termination result T ::= skip | •

Programs operate on a state (a.k.a. store, or memory). A
state, ranged over by σ, maps variables and fields to
integers, and class names to (class) initialization statuses.
A class initialization status S denotes the loaded status of
a class named C in a state σ: C is uninitialized in σ when
σ(C) = U; C is being initialized when σ(C) = B, and is
initialized successfully when σ(C) = I. C has failed to
initialize when σ(C) = •. We use the following notation
for updating the value of x in σ, and analogous notation
for a C.x 7→ n and a C 7→ S update.

σ[x 7→ n](x′) =

{
n , if, x ≡ x′
σ(x′) , otherwise

We use as a wildcard, that is, any mathematical
object, which we do not intend to refer to4. The (big-
step) operational semantics of our language is given by
relations of the form 〈σ, 〉 ⇒ 〈σ′, 〉. Here, σ is the state
before evaluation, the former is that which is evaluated
under σ, the latter is the result of the evaluation,
and σ′ is the resulting state. Evaluation of expressions
is given in Figure 2 (a). The relation 〈σ, e〉 ⇒ 〈σ′, V 〉
states that the expression e in the state σ evaluates to
the value V with final state σ′. If V = •, an error
occurred during the evaluation of e under σ. Otherwise,
e evaluated successfully, in which case V = n for some
n. The inference rules in Figure 2 (a) are straightforward
except those for reading from a field of a class, C.x. Both
read and write access to a field of a class C triggers
initialization of C. That is, the definition of C, τ(C),
is evaluated under σ using the rules in Figure 2 (b),
using relation 〈σ, c〉 ⇒ 〈σ′, I〉 with c = τ(C) = C {i},
which states that class definition c in state σ evaluates
to initialization result I with final state σ′. If σ(C) 6= U,
then initialization of C has already been triggered, and
possibly failed, so I = σ(C) and σ′ = σ. If σ(C) = U,
then C needs to be initialized. This is done by executing
the field definitions of C as assignments. We refer to this
code as the (class) initializer of C. Given field definitions
i of C, we define the initializer of C, s(C, i), as follows.

s(C, ε) = skip

s(C, (x = e)i) = C.x := e; s(C, i)

So, to initialize C, we execute s(C, i) under σ with initial-
ization status of C set to B, using relation 〈σ, s〉 ⇒ 〈σ′, T 〉
with s = s(C, i), which states that statement s in state σ

4. Multiple occurrences of in the same context can represent
different mathematical objects.
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NUM⇒
−

〈σ, n〉 ⇒ 〈σ, n〉
VAR⇒

−
〈σ, x〉 ⇒ 〈σ, σ(x)〉

FIELD-E⇒
〈σ, τ(C)〉 ⇒ 〈σ′, •〉
〈σ,C.x〉 ⇒ 〈σ′, •〉

FIELD-OK⇒
〈σ, τ(C)〉 ⇒ 〈σ′, I〉 I ∈ {I, B}
〈σ,C.x〉 ⇒ 〈σ′, σ′(C.x)〉

OP-EL⇒
〈σ, e1〉 ⇒ 〈σ′, •〉

〈σ, e1 ⊕ e2〉 ⇒ 〈σ′, •〉

OP-ER⇒
〈σ, e1〉 ⇒ 〈σ′, n〉 〈σ′, e2〉 ⇒ 〈σ′′, •〉

〈σ, e1 ⊕ e2〉 ⇒ 〈σ′′, •〉

OP-EP⇒
〈σ, e1〉 ⇒ 〈σ′, n1〉 〈σ′, e2〉 ⇒ 〈σ′′, n2〉 n1 ⊕P n2 = •

〈σ, e1 ⊕P e2〉 ⇒ 〈σ′′, •〉

OP-OK⇒
〈σ, e1〉 ⇒ 〈σ′, n1〉 〈σ′, e2〉 ⇒ 〈σ′′, n2〉 n1 ⊕ n2 = n

〈σ, e1 ⊕ e2〉 ⇒ 〈σ′′, n〉
(a) Expressions

INIT-A⇒
σ(C) 6= U

〈σ,C {i}〉 ⇒ 〈σ, σ(C)〉

INIT-U⇒
σ(C) = U 〈σ[C 7→ B], s(C, i)〉 ⇒ 〈σ′, T 〉
〈σ,C {i}〉 ⇒ 〈σ′[C 7→ I(T )], I(T )〉

(b) Class Definitions

Fig. 2: Operational Semantics for Expression Evaluation

evaluates to termination result T with final state σ′. If
T = •, then an error occurred during the execution.
Otherwise, T = skip, signifying that the execution
was error-free. Once execution of i has terminated with
termination result T , we set the initialization status of C
in the resulting memory to I(T ), where

I(T ) =

{
I , if T = skip,
• , otherwise (T = •).

If I = •, then this means C failed to initialize (now
or previously), so its field read will fail. Otherwise, the
resulting value is the value C.x has in the resulting
memory. Note that for readability, we have postponed
all treatment of class hierarchies to Section 6.

Execution of statements is given in Figure 3. We let
0̄ denote a non-0, non-• value. Again, the inference
rules for the big-step reduction relation are straightfor-
ward, with the exception of the expression evaluation
error rule (E-E⇒) and the class field assignment rules
(FIELD-A-E⇒) and (FIELD-A-OK⇒). For the former, Q[e]
specifies a grammar with a “hole” in it. That is, e is a
formal parameter, and, for instance, Q[4 + 5 ∗ x] defines
a grammar where e has been replaced by 4 + 5 ∗ x
(while 4 + 5 ∗ x do skip is generated by said grammar).
For the latter, note that an assignment to C.x triggers
initialization of C. To initialize C in rules (FIELD-A-E⇒)
and (FIELD-A-OK⇒), we simply read C.x, since doing
this causes C to be initialized as a side-effect.

4 SECURITY
We now develop a security notion for our language,
and give examples of programs that leak through class
initialization statuses.

VAR-A⇒
〈σ, e〉 ⇒ 〈σ′, n〉

〈σ, x := e〉 ⇒ 〈σ′[x 7→ n], skip〉

E-E⇒
〈σ, e〉 ⇒ 〈σ′, •〉
〈σ,Q[e]〉 ⇒ 〈σ′, •〉

where
Q[e] ::= x := e | C.x := e

| if e then s1 else s2
| while e do s

FIELD-A-E⇒
〈σ, e〉 ⇒ 〈σ′, n〉 〈σ′, C.x〉 ⇒ 〈σ′′, •〉

〈σ,C.x := e〉 ⇒ 〈σ′′, •〉

FIELD-A-OK⇒
〈σ, e〉 ⇒ 〈σ′, n〉 〈σ′, C.x〉 ⇒ 〈σ′′, n′〉
〈σ,C.x := e〉 ⇒ 〈σ′′[C.x 7→ n], skip〉

SEQ-E⇒
〈σ, s1〉 ⇒ 〈σ′, •〉
〈σ, s1; s2〉 ⇒ 〈σ′, •〉

SEQ-OK⇒
〈σ, s1〉 ⇒ 〈σ′, skip〉 〈σ′, s2〉 ⇒ 〈σ′′, T 〉

〈σ, s1; s2〉 ⇒ 〈σ′′, T 〉

IF-T⇒
〈σ, e〉 ⇒ 〈σ′, 0̄〉 〈σ′, s1〉 ⇒ 〈σ′′, T 〉
〈σ, if e then s1 else s2〉 ⇒ 〈σ′′, T 〉

IF-F⇒
〈σ, e〉 ⇒ 〈σ′, 0〉 〈σ′, s2〉 ⇒ 〈σ′′, T 〉
〈σ, if e then s1 else s2〉 ⇒ 〈σ′′, T 〉

TRY-E⇒
〈σ, s1〉 ⇒ 〈σ′, •〉 〈σ′, s2〉 ⇒ 〈σ′′, T 〉
〈σ, try s1 catch s2〉 ⇒ 〈σ′′, T 〉

TRY-OK⇒
〈σ, s1〉 ⇒ 〈σ′, skip〉

〈σ, try s1 catch s2〉 ⇒ 〈σ′, skip〉

WHILE-F⇒
〈σ, e〉 ⇒ 〈σ′, 0〉

〈σ, while e do s〉 ⇒ 〈σ′, skip〉

WHILE-T⇒
〈σ, e〉 ⇒ 〈σ′, 0̄〉 〈σ′, s; while e do s〉 ⇒ 〈σ′′, T 〉

〈σ, while e do s〉 ⇒ 〈σ′′, T 〉

Fig. 3: Operational Semantics for Statement Execution

4.1 Lattices
We recap some basic definitions from order theory. A
partially ordered set (poset) is a set A together with a
binary relation v over A which is reflexive, antisym-
metric and transitive. For x, y, z ∈ A, z is a join (least
upper bound, lub) of x and y if x v z, y v z and
∀w ∈ A .x v w ∧ y v w =⇒ z v w. If a lub of x and y
exists, it is (provably) unique, so we denote it xty, thus
defining a join operator t. When x t y is defined ∀x, y,
then poset A is a join-semi-lattice. For x, y, z ∈ A, z is
a meet (greatest lower bound, glb) of x and y if z v x,
z v y and ∀w ∈ A .w v x ∧ w v y =⇒ w v z. If a glb
of x and y exists, it is (provably) unique, so we denote
it x u y, thus defining a meet operator u. When x u y
is defined ∀x, y, then poset A is a meet-semi-lattice. A
poset is a lattice iff it is a join- and a meet-semi-lattice.

4.2 Noninterference
We assume an arbitrary lattice L of security lev-
els [Den76]. In our examples, we use a two-level lattice;
low (public) and high (secret), with low v high. We
let metavariables ` and pc range over security levels.
We assume that each variable and class field has been
assigned a fixed security level, and denote this mapping
from variables and class fields to security levels by lvl.
We extend this mapping to expressions by letting lvl(e)
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denote the least upper bound of the security levels of
all variables and class fields occurring in lvl(e). For
notational simplicity, we assume a fixed lvl henceforth.

These security levels define who can observe what.
An observer in our setting is assigned a security level
expressing which variables and class fields we assume
the observer has access to. If an observer has level `, then
the observer can read variables and class fields with level
v `, and write to these before the program is run. This
gives rise to an (observational) equivalence on memories.

Definition 4.1 (l-equivalence). σ1 and σ2 are `-equivalent,
written σ1 =` σ2, iff,

∀x.lvl(x) v ` =⇒ σ1(x) = σ2(x) (1)
∀C.(∃C.x . lvl(C.x) v `) =⇒ σ1(C) = σ2(C) (2)

∀C.x.
(

lvl(C.x) v `
∧ σi(C) ∈ {I, B}

)
=⇒ σ1(C.x) = σ2(C.x) (3)

It turns out =` is an equivalence relation, which will
turn out to be useful later.

We adopt a commonly-used baseline policy of
termination-insensitive noninterference [VSI96], [SM03],
[PS03]. Intuitively, a program satisfies noninterference
if for any two initial memories that agree on public
data, whenever the program runs that start in these
memories terminate, then these runs result in the mem-
ories that also agree on public data. This policy is an
appropriate fit for batchjob programs, where leaks due
to (non)termination are ignored because they may leak at
most one bit per execution [AHSS08]. An initial memory
σinit in our setting satisfies σinit(C) = U for all C, and
σinit(C.x) = 0 for all C.x. In this sense, the “input” to a
program is a value assignment to global variables.

Definition 4.2 (TINI). s satisfies termination-insensitive
noninterference (TINI) if, for all ` and initial σ1, σ2 s.t.
σ1 =` σ2, if 〈σ1, s〉 ⇒ 〈σ′1, skip〉 and 〈σ2, s〉 ⇒ 〈σ′2, skip〉,
then σ′1 =` σ

′
2.

4.3 Running Examples

We now present challenges an enforcement mechanism
of TINI must deal with, in form of example programs,
some of which are insecure, others which are secure.
While the programs are simple, their pattern can eas-
ily arise in larger programs, so a decent enforcement
mechanism must reject the insecure programs, yet accept
the secure programs, presented here. Our first program,
pmain, is the main example from Section 2. Even with
all fields in the class table labeled high , this program
leaks an out-of-scope secret context by (ab)use of the
try-catch language construct. One way to reject this
program in an enforcement would be to “taint” C by the
security level of all contexts which dereferencing of C
occurs in. This approach would also reject part, obtained
by replacing the definition of D with the following.

D {x = 1 + C.y}

This program is secure. However, for some memories,
try new C catch l := 1 becomes insecure. Namely, the
memories that state that C failed to initialize. However,
these memories never arise when running part on an ini-
tial memory (C cannot fail to initialize), meaning we can-
not universally and unconditionally quantify memories
when proving soundness of the enforcement mechanism,
as artificial flows can then arise.

The next program, pLinH, leaks since the point during
control flow at which a class C with an observable field
is initialized, depends on a secret, and observable parts
of the memory change between these points.

D.l := 0;

if h = 0 then new C else skip;

D.l := 1;

if C.l then l := 1 else l := 0;

Class table of pLinH:

C {l = 0 +D.l}

D {l = 0}

This program can be secured by injecting new C; just
before the first if statement in pLinH. We refer to this
modified pLinH as p′LinH. The lesson here is that it is okay
for a reference to a class C, containing a low field, to
appear in a high context, as long as dereferencing C there
cannot cause C to be initialized.

5 ENFORCEMENT

We now present a type system for enforcing noninter-
ference. The type system formalizes a data-flow analysis
for tracking information dependencies in a program.
To guarantee secure class initialization, in addition to
standard information flow tracking in imperative sys-
tems [DD77], [VSI96], [SM03], we need to track two
things during evaluations: i) which classes are initialized,
and ii) what information is leaked when such an action
does (not) produce an error. To track i), our enforcement
performs a must analysis to soundly approximate at any
program point which class must be (in the process of
being) initialized. To track ii), our enforcement maintains
a security level for each class expressing information ob-
tained by observing whether its initialization produced
an error or not (⊥ for classes which cannot fail to initial-
ize). The type system is syntax-directed, in the sense that
the type rules specify how to compute the constituents
of a type judgment. A type inference algorithm can thus
easily be obtained from our type system.

As is standard [DD77], [VSI96], the type system
(over)approximates information flows during operator
applications and at join points, that is, at ”if”, ”try” and
”while” constructs. The result of an operator application
contains information from both operands, a partial oper-
ator application is considered able to fail, any branch in
an ”if” is considered possible, any number of iterations
of ”while” are considered possible, a try-branch of a
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”try” is considered able to fail at any point, and the
execution of the catch-branch is considered possible.

5.1 Type Environment

U

B

I

Fig. 4: LI\•.

The above-mentioned tracking is main-
tained by the type environment Γ. Let LI\•
denote the lattice given by U v B and
B v I, illustrated in Figure 4. An ini-
tialization status as a type indicates the
highest guarantee, in the order U, B and I,
of the initialization status of a class. Type
U thus means ”no guarantee”. A type
environment Γ consists of two mappings,

Γs : dom(τ)→ LI\• Γe : dom(τ)→ L.

Γs keeps track of the initialization status of classes. The
second, Γe, tracks information conveyed by observing
whether a previous initialization of a class yielded an
error. The notation for updating a Γ is given below (note
the first case in Γ[C 7→e `]

e
(Ĉ)).

Γ[C 7→s I]
s
(Ĉ) =

{
I if Ĉ = C

Γs(Ĉ) otherwise.

Γ[C 7→e `]
e
(Ĉ) =

{
Γe(Ĉ) t ` if Ĉ = C

Γe(Ĉ) otherwise.

For Γ to be sound wrt. some term t, Γs must be an
underapproximation, and Γe an overapproximation. Say
you have Γ1 and Γ2 representing type environments for
two different control flow paths in the evaluation of t.
To obtain a Γ for the join point of these two paths, we
set Γ = Γ1 � Γ2, with � defined

(Γ1 � Γ2)
s
(C) = Γ1

s(C) u Γ2
s(C)

(Γ1 � Γ2)
e
(C) = Γ1

e(C) t Γ2
e(C)

The rationale for Γs: We can only guarantee a class is
initialized at the join point for all evaluations reaching
said point if both Γ1 and Γ2 say the class is initialized.
The rationale for Γe: We assume the attacker knows
exactly which control flow path was taken by the pro-
gram, and thus exactly where classes fail to initialize. As
demonstrated by pmain, the knowledge of where during
control flow a class fails to initialize can be the source
of an information leak.

5.2 Type Rules
The type rules, for expressions and statements respec-
tively, are given in Figures 5 and 6. The rules define a
type judgement relation pc ` Γ {t}Γ′ : `, where pc, ` ∈ L.
This type judgement reads:

“Under context pc, t maps type environment Γ
to type environment Γ′ and error level `”

We use the type judgement to gain insight into program
behaviour in the following way.

“Assume t is to be evaluated in a context con-
taining information pc, with Γ expressing which

NUM`
−

pc ` Γ {n}Γ : ⊥
VAR`

−
pc ` Γ {x}Γ : ⊥

FIELD`
pc ` Γ {τ(C)}Γ′ : `

pc ` Γ {C.x}Γ′ : `

OP-T`
pc ` Γ0 {e1}Γ1 : `1 pc t `1 ` Γ1 {e2}Γ2 : `2

pc ` Γ0 {e1 ⊕T e2}Γ2 : `1 t `2

OP-P`
pc ` Γ0 {e1}Γ1 : `1 pc t `1 ` Γ1 {e2}Γ2 : `2

pc ` Γ0 {e1 ⊕P e2}Γ2 : `1 t `2 t lvl(e1) t lvl(e2) t pc

(a) Expressions

INIT-T`
Γs(C) = I

pc ` Γ {C {i}}Γ : ⊥

INIT-F`
Γs(C) = U pc t Γe(C) `C Γ[C 7→s B] {i}Γ′ : `C

pc ` Γ {C {i}}Γ′[C 7→s I, C 7→e `C ] : `C t Γ′e(C)

(b) Class Definitions

INIT`

⊔i−1
j=1 `j t pc ` Γi−1 {ei}Γi : `i lvl(ei), pc,

⊔n
j=1 `j v lvl(C.xi)

pc `C Γ0 {x1 = e1; · · · ;xn = en}Γn :
⊔n

j=1 `j

(c) Class Initializers

Fig. 5: Typing of Expressions

classes are already initialized and information
leaked through initialization error observations.
Then Γ′ records (at most) the classes which
were initialized during (successful) evaluation
of t, and the new information that can leak
through initialization error observations. Fur-
ther, ` expresses the information leaked to ob-
servations of an evaluation error of t. This
whole evaluation contains no insecure flows”.

That last remark entails that we can use our enforcement
to reason about the security of programs. The type rules
contain several constraints engineered to make this so.
We will explain the type rules now, and highlight a proof
that our type judgment carries this meaning in Section 7.

We start with the rules for expression evaluation in
Figure 5 (a). Evaluation of n and x cannot fail and
does not initialize classes, thus motivating (NUM`) and
(VAR`). However, this is not the case in (FIELD`), as
evaluating C.x can initialize C. We therefore type the
definition of C, τ(C), using the rules in Figure 5 (b),
which we will describe momentarily. Now that we know
how to type base expressions we move on to the type
rules for compound expressions, (OP-T`) and (OP-P`).
As mentioned previously, there are two kinds of opera-
tors; total and partial. In both cases, when typing e1⊕e2,
we first type e1, followed by e2. Notice that the context
of the e2 typing is augmented by `1; this is because in our
semantics, e2 is not evaluated at all if the evaluation of e1

fails. Since either of these evaluations can fail, `j are both
reflected in `. For total operators, we are done. However,
for partial operators, e1 ⊕ e2 can fail because e1 ⊕ e2 is
undefined. An observer might know that e1⊕ e2 fails as
a consequence of this (for instance, when this is the only
way e1 ⊕ e2 can fail, as in 1/h). Thus the information in
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any variable or field in e1 and e2 leaks to `.
We now move on to Figure 5 (b). Recall from the

semantics that when evaluating C.x, either initialization
of C is triggered or not. If C is triggered, no evalu-
ation occurs, and if C is not triggered, the initializer
is evaluated. This behaviour is reflected in (INIT-T`)
and (INIT-F`). Observe that the initializer can be typed
multiple times, once for each different context in which
initialization, and thus failure, is possible. The need for
this was highlighted at the end of Section 5.1. When
typing C {i}, we first consult Γs(C). If Γs(C) = I, no
flows occur since no evaluation can possibly occur here.
However, if Γs(C) = U, initializer i is typed using the
initializer typing rule in Figures 5 (c). The context of
this typing is raised by Γe(C), as this evaluation is only
possible if C has not been initialized (and then possibly
failed) previously. Γ is updated to Γ[C 7→s B] since C is
being initialized. As this initialization attempt can fail
as a consequence of a previous initialization attempt
failing, Γ′

e
(C) is reflected in `. At last, the initialization

status of C is set to I and the error level tracking of C is
augmented by `C , in Γ′. Notice that there is no rule for
the case Γs(C) = B. This means that our type system will
reject any program which contains a mutual dependency
in field initializers in the class table, such as classes C
and D in the following class table.

C {l = 1 +D.l;h = 1 + E.h}
D {l = 0 + C.h}
E {h = 4}

This also means that between Γ[C 7→s B] and Γ′, the
initialization status of C is not updated. So Γ′

s
(C) = B,

always. While rejecting programs with mutual depen-
dencies rules out some well-behaving programs, it has
been pointed out e.g. in [War06] section 3.5.1 that a)
mutual dependencies should be considered a bug since
they introduce hard-to-predict behavior, and b) there
are tools which can detect these. Because of this, the
added challenge in proving soundness, and since mutual
dependencies do not increase the bandwidth of leaks
through class initialization statuses, we chose not to
consider this feature in our security analysis. To add
this feature to the typesystem, it should be sufficient to
replace the premise of (INIT-T`) with Γs(C) ∈ {B, I}.

We now move on to Figure 5 (c). The one rule for
initializer typing, (INIT`), types each initializer expres-
sion in the same order as they would be evaluated
in the semantics. Since the evaluation of an initializer
expression depends on the success of all prior initializer
expressions in this order, the context of the ei typing
is raised by

⊔i−1
j=1 `j . Likewise, a future read of any

field in C will succeed only if none of the initializer
expressions evaluated to error during initialization, so⊔n

j=1 `j v lvl(C.xi) must hold.
In the statement typing rules in Figure 6, we prevent

explicit flows (l := h) and implicit flows [DD77] via
control structure (if h = 0 then l := 0 else l := 1) in a
standard fashion [DD77], [VSI96], [SM03]. What is non-

e

s1 s2

•

skip

0̄ 0

• •

•

skipskip

s1

skip

s2

•

skip
•

skip

•

e

s

skip•

0̄ 0

•

•

skip

if e then s1 else s2 try s1 catch s2 while e do s
(a) (b) (c)

Fig. 7: Join Points in Control Flows.

standard here is how we construct type environments
for joins in control flow branches. The control flows for
the language constructs with join points (in successful
evaluations) is illustrated in Figure 7. Compare (IF`) to
Figure 7 (a). Here there are two successful control flow
paths. The only classes we can guarantee are initialized
at the join point are those that are initialized after
taking either control flow path, hence the (Γ1 � Γ2)s in
the join point. Now compare (TRY`) to Figure 7 (b).
There are two control flow paths here, one for successful
evaluation of s1, the other for successful evaluation of
s2 after an erroneous evaluation of s1. The interesting
case is the latter, as s2 is typed under Γ� Γ1. Since
s1 can yield an error without initializing a class, s2

must be typed under Γs. Since s1 can fail anywhere,
and the attacker could know exactly where s1 fails, s2

must be typed under Γe
1. It turns out that Γs and Γe

1

together are exactly Γ� Γ1. Besides this, our treatment
of exceptions is standard (see [Mye99], [PS03], [HS06],
[AS09]). Now compare (WHILE`) to Figure 7 (c). Here
there are (possibly) infinitely many control flow paths.
In the type rule, n is the number of static iterations of the
type system on e and s to produce successive type envi-
ronments before fixpoint is reached. Observe that loops
are typed the same way as the infinitely long sequence
e; s; e; s; · · · . Since there are finitely many Γ (as τ has
finite classes, and policy has finite labels), by Lemma 7.2,
eventually the typing of this sequence reaches a fixed
point. Since e might yield 0 on first evaluation, the only
classes we can guarantee are initialized are those that are
initialized during evaluation of e, so the s-part of the join
environment should equal Γ′0

s. Since an attacker could
know exactly which iteration of the loop failed, and
whether e or s failed, the e-part of the join environment
must equal

⊔n
j=0 Γ′j

etΓe
j+1. It turns out that this, together

with Γ′0
s, is exactly

⊙n
j=0 Γ′j � Γj+1.

6 HIERARCHIES

So far, we have seen a complete semantics and set of
type rules for our language, excluding the C <:C ′ {i}
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SKIP`
−

pc ` Γ {skip}Γ : ⊥
FIELD-A`

pc ` Γ {e}Γ′ : ` pc t ` ` Γ′ {C.x}Γ′′ : `′ lvl(e), pc t `, `′ v lvl(C.x)

pc ` Γ {C.x := e}Γ′′ : ` t `′

VAR-A`
pc ` Γ {e}Γ′ : ` lvl(e), pc, ` v lvl(x)

pc ` Γ {x := e}Γ′ : `
SEQ`

pc ` Γ0 {s1}Γ1 : `1 pc t `1 ` Γ1 {s2}Γ2 : `2

pc ` Γ0 {s1; s2}Γ2 : `1 t `2

IF`
pc ` Γ {e}Γ′ : ` pc t lvl(e) t ` ` Γ′ {si}Γi : `i

pc ` Γ {if e then s1 else s2}Γ1 � Γ2 : ` t `1 t `2
TRY`

pc ` Γ {s1}Γ1 : `1 pc t `1 ` Γ� Γ1 {s2}Γ2 : `2

pc ` Γ {try s1 catch s2}Γ1 � Γ2 : `2

WHILE`

pc t `i ` Γi {e}Γ′i : `ei pc t `i t `ei t lvl(e) ` Γ′i {s}Γi+1 : `si
`0 = ⊥ `i+1 = `i t `ei t `si i = 0..n (Γn, `n) = (Γn+1, `n+1)

pc ` Γ0 {while e do s}
⊙n

j=0 Γ′j � Γj+1 : `n

Fig. 6: Typing of Statements

language construct. We saw in pdep from Section 2 that
hierarchical dependencies can be utilized to leak infor-
mation. We now present the semantics of hierarchical
dependencies, and how to analyze programs which uti-
lize these. We handle hierarchical dependencies in the
same way as dependencies in field initializers. While
the procedure of initializing C ′ as a consequence of
initializing C is the same as the procedure for initializing
C ′ as a consequence of reading a field of C ′, we cannot
emulate superclass initialization through field reads like
we did in (FIELD-A-E⇒) and (FIELD-A-OK⇒), since a
class does not necessarily have any class fields. While
some rules can be merged to yield a more concise set
of rules, having a rule for each possible combination
of class and superclass initialization statuses simplifies
case analysis of programs, and thus our proofs. As
such, while these rules may be technical, they should
be unsurprising, given what we have seen so far.

6.1 Semantics

The semantic rules of class hierarchies are given in
Figure 8. Just like for normal class initialization, if ini-
tialization of C has begun already, we do nothing, and
simply return the initialization status of C in σ. Hence
(INIT-S-A⇒). If C is uninitialized, however, then the
first thing to do when initializing C is to initialize its
superclass, C ′, if needed. If initialization of C ′ has failed,
then we cannot proceed initializing C, so initialization
of C will fail. Hence (INIT-S-UF⇒). If initialization of
C ′ has already begun (and has not failed), we skip the
initialization of C ′, so this case in rule (INIT-S-UI⇒) is
just like the semantics of normal class initialization. If C ′

is uninitialized, we initialize it (setting the initialization
status of C to being initialized, since we are currently
initializing C). If this initialization of C ′ fails, then the
initialization of C immediately fails (we don’t even run
i), hence (INIT-S-UUF⇒). If initialization of C ′ succeeds,
however, we run i. This evaluation yields either skip (for
success) or • (for failure). Regardless of which, we return,
with initialization of C set to the initialization status
corresponding to the return value from the i evaluation,
I (for success) or • (for failure). Hence (INIT-S-UUI⇒).

6.2 Type Rules

The rules for typing class definitions with hierarchical
dependencies are given in Figure 9. Like for normal class
initialization, when the type environment asserts that C
is initialized, since the semantics would do nothing in
this case, no flows occur here, so when pc ` Γ {c}Γ′ : `,
Γ′ = Γ and ` = ⊥, hence (INIT-S-T`). If C is uninitialized
in Γ, we check the status of C ′. If Γ asserts that C ′ is
already initialized, then no flows arise from or through
C ′, so the (INIT-S-FT`) case is exactly like normal class
initialization. The last rule, (INIT-S-FF`), considers the
case where both C and C ′ are uninitialized in Γ. Since
this might also be the case in the program semantics, we
assume the worst, that neither class is initialized. First
we type the C ′ class definition (under the assertion that
C is being initialized). Since i would only be evaluated
if C ′ initialized successfully, we raise the context under
which we type i (evaluted after the C ′ definition) by
`C′ . Likewise, because C can fail to initialize as a con-
sequence of either the C ′ initialization failing or the i
evaluation failing, Γ′′

e
(C) is augmented with `C′ t `C .

7 SOUNDNESS

We now see how the different aspects of the type system
fit together to form a whole which rejects leaking pro-
grams like pmain and pLinH while at the same time staying
permissive, accepting programs like part and p′LinH, given
in Section 4.3. As evident in program pHmain, which is
pmain with all class fields labeled high , the main flows of
interest are not the typical explicit and implicit flows for
simple imperative programs. For instance, the parts

C.y := 0;
if h 6= 0 then (try new D catch skip) else skip;

and

C.y := 1; l := 0;
try new D catch l := 1

are both secure. The insecurity arises when you put these
in sequence. Typical type systems for information flow
are (sequentially) compositional wrt. TINI, which makes
proving soundness wrt. TINI a simple matter. As our
type system does not have this property in general, our
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INIT-S-A⇒
σ(C) 6= U

〈σ,C <:C′ {i}〉 ⇒ 〈σ, σ(C)〉
INIT-S-UI⇒

σ(C) = U σ(C′) ∈ {I, B} 〈σ[C 7→ B], s(C, i)〉 ⇒ 〈σ′, T 〉
〈σ,C <:C′ {i}〉 ⇒ 〈σ′[C 7→ I(T )], I(T )〉

INIT-S-UF⇒
σ(C) = U σ(C′) = •

〈σ,C <:C′ {i}〉 ⇒ 〈σ[C 7→ •], •〉
INIT-S-UUF⇒

σ(C) = U σ(C′) = U 〈σ[C 7→ B], τ(C′)〉 ⇒ 〈σ′, •〉
〈σ,C <:C′ {i}〉 ⇒ 〈σ′[C 7→ •], •〉

INIT-S-UUI⇒
σ(C) = U σ(C′) = U 〈σ[C 7→ B], τ(C′)〉 ⇒ 〈σ′, I〉 〈σ′[C 7→ B], s(C, i)〉 ⇒ 〈σ′′, T 〉

〈σ,C <:C′ {i}〉 ⇒ 〈σ′′[C 7→ I(T )], I(T )〉
(a) Class Definitions

Fig. 8: Big-step Operational Semantics for Expression Evaluation, Class Hierarchies

INIT-S-T`
Γs(C) = I

pc ` Γ {C <:C′ {i}}Γ : ⊥
INIT-S-FT`

Γs(C) = U Γs(C′) = I pc t Γe(C) `C Γ[C 7→s B] {i}Γ′ : `C

pc ` Γ {C <:C′ {i}}Γ′[C 7→s I, C 7→e `C ] : `C t Γ′e(C)

INIT-S-FF`
Γs(C) = U Γs(C′) = U pc ` Γ[C 7→s B] {τ(C′)}Γ′ : `C′ pc t `C′ t Γ′e(C) `C Γ′ {i}Γ′′ : `C

pc ` Γ {C <:C′ {i}}Γ′′[C 7→s I, C 7→e `C′ t `C ] : `C′ t `C t Γ′′e(C)

(a) Class Definitions

Fig. 9: Typing of Expressions, Class Hierarchies

soundness proof is nonstandard. The key part of the
soundness proof are the lemmas it makes use of, as these
establish a) which semantic and typing invariants are
required for compositionality, and that b) these invari-
ants hold in initial states and typing environments. We
motivate invariants with examples. Proofs of theoretical
results presented in this paper can be found in the full
version of this paper [RNS11]. We present the lemmas
for statements; the same results hold for expressions.

7.1 Monotonicity

U

B

I •

Fig. 10: LI .

The semantics and the type system both
satisfy simple monotonicity properties
wrt. their respective environments. Let LI

be the (meet-semi-)lattice given by U v B,
B v I and B v •, illustrated in Figure 10.
This yields a (meet-semi-)lattice L⇒ of
memories, where σ v σ′ iff

∀C .σ(C) v σ′(C).

Notice that no rule for establishing 〈σ, 〉 ⇒ 〈σ′, 〉,
assigns C to an I in σ′ such that σ(C) 6v I . This yields
the following monotonicity property.

Lemma 7.1 (Reduction relation monotone wrt. σ). For all
σ, σ′ and s, if 〈σ, s〉 ⇒ 〈σ′, 〉, then σ v σ′.

We likewise obtain a lattice L` of type environments
by defining Γ v Γ′ iff

∀C . Γs(C) v Γ′
s
(C) ∧ Γe(C) v Γ′

e
(C).

Observe that no rule for establishing ` Γ {t}Γ′ :
assigns C to an I and `e in Γ′ s.t. Γs(C) 6v I or Γe(C) 6v `e.
This yields the following monotonicity property, which
also helps motivate the definition of (Γ1 � Γ2)e.

Lemma 7.2 (type judgement monotone wrt. Γ). For all
Γ, Γ′, and s, if ` Γ {s}Γ′ : , then Γ v Γ′.

7.2 Must-analysis
Recall that part of the type system tracks, at any given
point in the control flow of a program, which classes
must be initialized. This analysis is crucial if we want
to accept programs such as p′LinH, since, without it, the
enforcement would not know anything about the status
of classes possibly initialized in the past, meaning the
enforcement would need to regard C as uninitialized
when its reference is seen under h. For this analysis to
be sound, the following property must be preserved.

Definition 7.1 (agreement). σ agrees with Γ, written as
Γ |=dep σ, iff, for all C,
1) Γs(C) = I =⇒ σ(C) = I,
2) σ(C) = B ⇐⇒ Γs(C) = B.

Pt. 1) states what we expect; if the type environment
states that a class is initialized, then that class is initial-
ized in the corresponding memory. Pt. 2) states that a
class is being initialized in a run if and only if the anal-
ysis tracks that said class is being initialized5. While this
property may be straight-forward, a straight-forward
proof that the property is preserved through typing and
reduction fails. Consider the case where τ(C) is to be
evaluated under σ, with σ(C) = I, Γs(C) = U, Γ |=dep σ
and ` Γ {τ(C)}Γ′ : . Here, when 〈σ, τ(C)〉 ⇒ 〈σ′, I〉,
σ′ = σ. However, Γ′ = Γ is not guaranteed. This scenario
is not artificial or unrealistic, as demonstrated by the
following program

try x := C.x catch skip;
x := C.x

run in the presence of the following class table.

C {x = 1 +D.x}
D {x = 5}

5. About the ⇐⇒ : Note that, since Γ overapproximates σ, there
will be Γs for which Γs(C) = B for which there is no corresponding
σ. But this is no problem, as we only need agreement to hold where
such a σ exists.
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In line 2 of this program, for the type environment Γ at
this point, Γs(C) = U, since the must analysis can only
guarantee that a class is initialized after a try-catch if
said class is initialized in both the try and the catch
branch (and the catch branch initializes nothing). How-
ever, in the memory σ at this point, σ(C) = I, since the
try branch never fails. In the final type environment
Γ′, Γ′

s
(D) = I, and a quick review of the semantics

will show that in the final memory σ′, σ′(D) = I, so
Γ′ |=dep σ′. What is it, in the type system, and in the
semantics, that makes this so?

The answer: Dependencies. Recall that initialization of
a class C can fail if any of the classes C depends on
fail to initialize, or have failed previously. Thus, if C is
initialized successfully, then all the classes C depends on
must also be successfully initialized, for the remainder
of the run (last statement follows from Lemma 7.1). The
set dep(e) of classes e depends on is defined as follows.

dep(n) = ∅
dep(x) = ∅

dep(e1 ⊕ e2) = dep(e1) ∪ dep(e2)

dep(C.x) = dep(τ(C))

dep(C {i}) = dep(i) ∪ {C}
dep(C <:C ′ {i}) = dep(C ′) ∪ dep(i) ∪ {C}

dep(ε) = ∅
dep(x = e; i) = dep(e) ∪ dep(i)

Here, dep(e) is the set of classes that must be initialized
as a consequence of (successfully) evaluating e. Note that
in the case of x = e of class C, this assignment is al-
ways performed as a consequence of C being initialized.
Hence dep(x) is not part of a union on the right-hand
side of the definition of dep(x = e; i). Since classes are
only initialized when evaluating expressions, dep(·) is
not defined on s.

Definition 7.2 (dep consistency). For any function f where
dom(τ) ⊆ dom(f), we say f is dep-consistent, written `dep
f , iff (∀C . f(C) = I =⇒ ∀C ′ ∈ dep(τ(C)) . f(C ′) = I).

The type system preserves dep-consistency.

Lemma 7.3 (dep-consistency preservation). For all Γ, Γ′

and s, if i) ` Γ {s}Γ′ : , and ii) `dep Γ,
then iii) `dep Γ′.

Well-typed programs, run on a memory which agrees
with the initial type environment, which terminate suc-
cessfully, preserve dep-consistency and agreement.

Lemma 7.4 (agreement preservation). For all Γ, Γ′, s, σ
and σ′, if i) ` Γ {s}Γ′ : ,
ii) `dep Γ, `dep σ, Γ |=dep σ, and iii) 〈σ, s〉 ⇒ 〈σ′, T 〉
then iv) `dep σ′, and v) T 6= • =⇒ Γ′ |=dep σ

′.

7.3 Errors
The main facilitator of the information channel being
considered in this paper is evaluation errors, as these

can cause a class initialization to fail and thus be used
to store information. Cases where errors come into play
in our proofs are therefore of key importance. However,
as we have seen in part, this is not trivial; it is easy to con-
struct memories which “lie”, in the sense that they have
registered that a class which can never fail, has failed
to initialize. This creates artificial flows which our type
system cannot guarantee the absence of. To address this
issue, we formalize a sufficient condition for a memory
to be “honest”. Such memories are error consistent, that
is, a class is only failed in the memory if, during runtime,
that class could possibly fail. Since whether a class can
fail or not depends on the same for the classes it depends
on, this definition of error consistency is inductive in
nature. Finally, our operational semantics preserves error
consistency. This, together with the observation that
initial memories are error consistent, means we only
need to consider error consistent memories in our proofs.

Definition 7.3 (error consistency). σ is error consistent,
written `err σ, iff

∀C .σ(C) = • =⇒
∃σ′; (σ′ v σ), (`err σ′), (σ′(C) 6= •) . 〈σ′, τ(C)〉 ⇒ 〈 , •〉.

Lemma 7.5 (error consistency preservation). For all σ, σ′

and s, if i) `err σ, and ii) 〈σ, s〉 ⇒ 〈σ′, 〉,
then iii) `err σ′.

Since our operational semantics preserves dep-
consistency and agreement, we furthermore need only
consider error consistent memories which are depen-
dency consistent and agree with an appropriate type
environment. Some term evaluations can still yield error
under such memories; we call these terms volatile.

Definition 7.4 (volatile). s is volatile under Γ, written
Γ |=err s, iff there exists a σ for which

1) `err σ, `dep σ, Γ |=dep σ

2) 〈σ, s〉 ⇒ 〈 , •〉

Finally we arrive at what we really needed: A well-
typed volatile term leaks its context to its error level.
Observe that in part, the context did not leak, since
the type system did not encounter a partial operator
application. Intuitively, volatile expressions have a partial
operator application somewhere along the path the type
system takes to analyze s. If you examine (OP-P`), you
will see that this rule raises the error level by pc.

Lemma 7.6 (error leaks pc). For all Γ, s, pc and `′,
if i) pc ` Γ {s} : `′, ii) `dep Γ, and iii) Γ |=err s,
then iv) pc v `′.

Recall the leak in pmain. There, old confidential con-
textual information, out of scope at the time the “low”
assignment occurs, manages to leak into said assign-
ment. When comparing two `-equivalent memories dur-
ing parallel runs, we need a way to know, at the time
of the low assignment, that the program, in a previous
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scope, branched on confidential information, thus caus-
ing different class initialization statuses (of classes with
no observable fields). `-consistency gives us this.

Definition 7.5 (`-consistent). σ1, σ2 are `-consistent under
Γ, written σ1 ∼Γ

` σ2, iff, for all C,

σ1(C) 6= σ2(C) ∧ Γ |=err τ(C) =⇒ Γe(C) 6v `.

It turns out this relation is an equivalence relation,
which will be useful in the next subsection. To link this
relation with Lemma 7.6, intuitively, at the point where
two runs start disagreeing on the initialization status
of a class, the runs start entering a context contain-
ing confidential information. This context carries over
to the class initialization. If that initialization can fail,
then by Lemma 7.6, the error level of the initialization
contains confidential information. At last, this error level
is recorded in a type environment, and this recording
carries over to the join point of the two runs.

7.4 Noninterference

We now have enough tools to tackle the type soundness
result. If all runs on `-equivalent memories followed
the same control-flow path in the program, proving
soundness would be an easy matter. In reality, however,
two `-equivalent runs can take different control-flow
paths. It turns out that this only happens when an
evaluation of `-unobservables is involved. For instance,
for if e then s1 else s2, if the evaluation of e depended
only on observables, then e would evaluate to the same
value in the two runs on `-equivalent memories, thus
resulting in the same control-flow path taken. We would
like the memories at the join point to be `-equivalent,
but we cannot compare the intermediate memories of
the two branching runs, as that reasoning will not be
local. To address this issue, we ensure in our enforce-
ment that no observable effects are allowed when the
context contains confidential information. This way, if
the memories at the branching point are `-equivalent
(and `-consistent), the memories at the join point will
be `-equivalent (and `-consistent) by transitivity.

Lemma 7.7. For all s, σ, σ′, Γ, Γ′, ` and pc,
if i) pc ` Γ {s}Γ′ : , ii) (`dep Γ), (`dep σ), (Γ |=dep σ),
iii) (`err σ), iv) 〈σ, s〉 ⇒ 〈σ′, 〉, and iv) pc 6v `,
then vi) σ ∼Γ′

` σ′, and vii) σ =` σ
′.

At last we get to the main lemma which uses the
results we have seen so far. Given the usual assump-
tions, but for two `-equivalent, `-consistent memories,
Lemma 7.8 states that the final memories are `-equivalent
and `-consistent, and the success status of the evalua-
tions differs only if confidential information is in `′.

Lemma 7.8 (main). For all s, σj , σ′j , Γ, Γ′, `, `′ and Tj ,
if i) ` Γ {s}Γ′ : `′, ii) (`dep Γ), (`dep σj), (Γ |=dep σj),
iii) (`err σj), iv) 〈σj , s〉 ⇒ 〈σ′j , Tj〉,
v) σ1 ∼Γ

` σ2, and vi) σ1 =` σ2,

then vii) Tj 6= • = Tj̄ =⇒ `′ 6v `,
viii) σ′1 ∼Γ′

` σ′2, and ix) σ′1 =` σ
′
2.

Take special note of parts i), v) and vi) in the premise,
and parts viii) and ix) in the conclusion, of Lemma 7.8
— these imply type soundness! We show how to “boot-
strap” Lemma 7.8 to obtain a proof of soundness for our
type system now. Let Γinit

s(C) = U and Γinit
e(C) = ⊥

for each class in τ .

Theorem 7.1 (type soundness). For all s,
if there exists a Γ′ and `′ for which ⊥ ` Γinit {s}Γ′ : `′,
then s satisfies TINI.

Let initial σj be given such that 〈σj , s〉 ⇒ 〈σ′j , Tj〉 and
σ1 =` σ2, for any `. TINI then requires that σ′1 =` σ

′
2.

We get this by instantiating Lemma 7.8. We have iv)
and vi) of Lemma 7.8. Let Γ = Γinit and pc = ⊥. This
immediately gives us part i) of Lemma 7.8. Since no
classes are initialized in Γ or σj , and none have failed
in σj , parts ii), iii) and v) of Lemma 7.8 hold. This
immediately gives us part vii) of Lemma 7.8 (regardless
of whether Tj = skip or Tj = •), which is exactly what
we needed. So Theorem 7.1 holds.

8 RELATED WORK

A survey [SM03] on language-based information-flow
security contains an overview of the area. Most related
to ours is work on tracking information flow in object-
oriented languages and on information-flow controls in
the presence of exceptions.

Objects: To the best of our knowledge, the only
information-flow mechanism that addresses class ini-
tialization is the one implemented by Jif [Mye99],
[MZZ+10], a compiler for Java extended with security
types. As discussed earlier, Jif is rather conservative
about class initialization code. This code is restricted
to simple constant manipulation that may not raise
any exceptions. As mentioned earlier, sometimes it is
desirable to lift these restrictions.

Much other work has been done on information-flow
security for object-oriented languages. Although none of
the approaches directly addresses problems with class
initialization, we nevertheless discuss recent highlights.

Barthe and Serpette [BS99] present a type system for
enforcing information-flow security in a simple object-
oriented language based on the Abadi–Cardelli func-
tional object calculi [AC96]. Bieber et al. [BCG+02] ap-
ply model-checking for securing information flow in
smartcard applets. Avvenuti et al. [ABF03] suggest an
information-flow analysis in a Java bytecode-like lan-
guage. Bernardeschi et al. [BFLM05] check information-
flow security in Java bytecode by combining program
transformation and bytecode verification. These two ap-
proaches assume fixed security levels for classes. This
might not be a flexible choice since it forces all instances
and attributes to conform to the class level. Another
concern is the scalability of this choice to inheritance.
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Banerjee and Naumann [BN05] show how to guaran-
tee noninterference by type-based analysis for a Java-like
object-oriented language. Amtoft et al. [ABB06] present
a flow-sensitive logic for reasoning about information
flow in presence of pointers. Naumann [Nau06] in-
vestigates invariant-based verification of information-
flow properties in a language with heaps. Barthe and
Rezk [BR05] consider type-based enforcement of secure
information flow in Java bytecode-like languages. Barthe
et al. [BRN06] extend this to derive an information-flow
certifying compiler for a Java-like language.

Hammer and Snelting [HS09] develop a flow-
sensitive, context-sensitive, and object-sensitive frame-
work for controlling information flow by program de-
pendence graphs. This approach takes advantage of
similarities of information-flow and slicing analyses.

Exceptions: As noted earlier, our treatment of exception
handling draws on standard approaches from the lit-
erature (which we extend with the must-analysis). The
intuition is if an occurrence of an exception in a state-
ment may carry sensitive information, then there must
be no publicly-observable side effects in either the code
that handles the exception or in the code between the
statement and the exception-handling block. Jif [Mye99],
[MZZ+10] implements such a discipline. Based on a
similar discipline, Pottier and Simonet [PS03] propose
a sound treatment of exceptions for ML.

Barthe and Rezk [BR05] treat a single type of ex-
ceptions in a JVM-like language. Barthe et al. [BPR07]
extend this approach to multiple types of catchable ex-
ceptions. Connecting this with security-type preserving
compilation, Barthe et al. [BRN06] show how to securely
compile a source language with a single type of catchable
exceptions to the low-level language of [BR05].

Hedin and Sands [HS06] prove a noninterference
property for a type system that tracks information flow
via class-cast and null-pointer exceptions. Askarov and
Sabelfeld [AS09] show how to achieve permissive yet
secure exception handling by providing the choice for
each type of exception: either the traditional discipline
discussed above or by consistently disallowing to catch
exceptions. The actual choice for each kind of exception
is given to the programmer.

9 CONCLUSION

Seeking to shed light on a largely unexplored area, we
have presented considerations for and a formalization of
secure class initialization. Our considerations highlight
that class initialization poses challenges for security since
controlling (the order of) side effects performed by class
initialization is challenging. Hence, great care needs to
be taken by information-flow enforcement mechanisms
to guarantee security. One path, taken by Jif [Mye99],
[MZZ+10], is to severely restrict class initialization code
so that it may only manipulate constants in an exception-
free manner. Arguing that it is sometimes too restrictive,

we have explored another path: allow powerful initial-
ization code but track its side effects. The enforcement
ensures that the side effects do not reveal anything about
the differences in control-flow paths that the program
might take depending on secret input. Our formalization
demonstrates the idea by a type-and-effect system for
a simple language that enforces noninterference. To the
best of our knowledge, it is the first formal approach to
the problem of secure class initialization in the presence
of class hierarchies. (Soundness of Jif’s class initialization
is yet to be established.)

Future work includes machine-checking the invariant-
based proofs, currently given by structural induction in
the associated technical report [RNS11]. We would also
like to perform case studies to evaluate the precision of
our enforcement mechanism.
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