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Abstract—Recently, much progress has been made on achiev-
ing information-flow security via secure multi-execution. Secure
multi-execution (SME) is an elegant way to enforce security
by executing a given program multiple times, once for each
security level, while carefully dispatching inputs and ensuring
that an execution at a given level is responsible for producing
outputs for information sinks at that level. Secure multi-
execution guarantees noninterference, in the sense of no depen-
dencies from secret inputs to public outputs, and transparency,
in the sense that if a program is secure then its secure multi-
execution does not destroy its original behavior.

This paper pushes the boundary of what can be achieved
with secure multi-execution. First, we lift the assumption from
the original secure multi-execution work on the totality of
the input environment (that there is always assumed to be
input) and on the cooperative scheduling. Second, we generalize
secure multi-execution to distinguish between security levels
of presence and content of messages. Third, we introduce a
declassification model for secure multi-execution that allows
expressing what information can be released. Fourth, we
establish a full transparency result showing how secure multi-
execution can preserve the original order of messages in secure
programs. We demonstrate that full transparency is a key
enabler for discovering attacks with secure multi-execution.

I. INTRODUCTION

As modern attacks are becoming more sophisticated,
there is an increasing demand for more advanced protection
measures than those offerred by standard security practice.
We exemplify an instance of the problem with a motivating
scenario from web application security, but note that the
problem is of rather general nature.

Motivation: In the context of the web, third-party script
inclusion is pervasive. It drives the integration of adver-
tisement and statistics services. As an indicative example,
barackobama.com at the time of the 2012 US presiden-
tial campaign contained 76 different third-party tracking
scripts [SD12]. The tracking was used for target political ad-
vertisement. Script inclusions extend the trusted computing
base to the Internet domains of included scripts. This creates
dangerous scenarios of trust-abuse. This can be done either
by direct attacks from the included scripts or, perhaps more
dangerously, by indirect attacks when a popular service is
compromised and its scripts are replaced by the attacker. A
recent empirical study [NIK+12] of script inclusion reports
high reliance on third-party scripts. It outlines new attack
vectors showing how easy it is to get code running in
thousands of browsers simply by acquiring some stale or
misspelled domains. Access control mechanisms are of lim-

ited use because third-party scripts require access to sensitive
information for their proper functionality. This is particularly
important for statistics and context-aware advertisement ser-
vices on the web. Similar scenarios arise in the setting of
cloud computing where sharing the resources is desirable
but without compromising confidentiality and integrity. This
motivates the need for fine-grained information-flow control.

From static to dynamic information-flow control:
Tracking information flow in programs is a popular area
of research. Static analysis techniques have been exten-
sively explored, leading to tools like Jif [MZZ+01], Flow-
Caml [Sim03], and SparkAda Examiner [Bar03] that en-
hance compilers for Java, Caml, and Ada, respectively.
Recently, dynamic monitoring techniques have received in-
creased attention (cf. [LBJS06], [Le 07], [SST07], [SR09],
[AF09], [AF10], [HS12]), driven by the demand to analyze
dynamic programming languages like JavaScript. While
static analysis either accepts or rejects a given program
before it is run, dynamic monitors perform checks at run
time. There are known fundamental tensions [RS10] between
static and dynamic analyses, implying that none is superior
to the other. Although dynamic analysis might seem intu-
itively more permissive, it has to conservatively treat the
paths that are not taken by the current execution.

Secure multi-execution (SME): Recently, there has been
much progress on SME [DP10], [BDMP11a], [KWH11],
[JR11], [AF12], [BCD+12], [GDNP12], a runtime enforce-
ment for information flow. In contrast to the monitoring tech-
niques, the goal is not to prevent insecurities but to “repair”
them on the fly. This approach is secure by design: security is
achieved by separation of computations at different security
levels. The original program is run as many times as there
are security levels, where outputs at a given security levels
are only allowed if the security level of the program is
matched with the security level of the output channel. The
handling of inputs is slightly more involved because inputs
from less restrictive security levels are allowed to be used
in computations at more restrictive levels. Secure multi-
execution propagates inputs, once they are received, to the
runs of the program that are responsible for the computation
of outputs at more restrictive levels.

Typically, security levels are drawn from a lattice with
the intuition that information from an input source at level `
may flow to an output sink at level `′ only if ` v `′ [Den76].
For simplicity, we will often use the two-level lattice with
a secret (high) level and a public (low) level of confiden-



tiality. Figure 1 shows program P with a pair of input
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Figure 1: Original execution

sources, labeled high H and
low L, and a similarly-
labeled pair of sinks. The
baseline policy of noninter-
ference [GM82] demands
that low outputs do not de-
pend on high inputs.

Figure 2 shows how secure multi-execution achieves non-
interference. Program P is run twice, as PH at high and as
PL at low levels. The high input is fed into the high run.
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Figure 2: Secure multi-
execution

The low input is fed into
both the low and high run.
Dummy default values are
used whenever the low run
asks for high input. High
output is produced by the
high run, and the low out-
put is produced by the low
run, while low output of the
high run and high output of
the low run are ignored. It
is clear from the diagram
that noninterference is enforced because the low run, the
only producer of low output, never gets access to high input.

In contrast to the traditional dynamic analysis, there is
no concern about executions not taken because the control
flow of the low run cannot possibly be affected by high
input. Further, secure multi-execution provides transparency,
in the sense that if a program is secure then its secure multi-
execution does not destroy its original behavior.

Contributions: While secure multi-execution gains in-
creased popularity, there are open challenges that need to
be addressed before it can be applied widely. We overview
the pros and cons of secure multi-executions compared to
traditional information-flow control and, among other find-
ings, point out that secure multi-execution (i) lacks support
for fine-grained security levels for communication channels,
(ii) relies on restrictive scheduling, (iii) lacks support for
declassification, (iv) may reorder messages wrt. the original
execution, and (v) lacks support for detecting attacks.

We push the boundary of what can be achieved with
secure multi-execution. First, we lift the assumption from
the original secure multi-execution work on the totality of
the input environment (that there is always assumed to be
input) and on cooperative scheduling. Second, we generalize
secure multi-execution to distinguish between security levels
of presence and content of messages. Third, we introduce
a declassification model for secure multi-execution that
allows expressing what information can be released. Fourth,
we establish full transparency showing how secure multi-
execution can preserve the original order of messages in
secure programs by barrier synchronization. This enables the
use of secure multi-execution to discover attacks on runtime.

II. PROS AND CONS OF SECURE MULTI-EXECUTION

We overview the pros and cons of secure multi-execution
with respect to direct information-flow enforcement. The
overview has two goals: provide a general basis for deciding
on which enforcement mechanism to pick in a particular
case and identify the most pressing shortcomings, subject to
improvements by this paper. We start by listing of what we
view as the pros of secure multi-execution.

Noninterference by design: A significant advantage of
secure multi-execution is that it straightforwardly enforces
noninterference by a simple access-control discipline: com-
putation responsible for output at a given level never gets
access to information at more restrictive or incomparable
levels. This provides noninterference guarantees.

Language-independence: A major benefit is that secure
multi-execution can be enforced in a blackbox, language-
independent, fashion. The enforcement only concerns input
and output operations allowing the rest of the language to be
arbitrarily complex. This is particularly useful for dynamic
languages like JavaScript that are hard to analyze.

Transparency for secure programs: If the original pro-
gram is secure, there are transparency guarantees that limit
ways in which semantics can be modified. The original
work on secure multi-execution shows per-channel trans-
parency (or precision in the terminology of Devriese and
Piessens [DP10]). This means that if the original program
is secure then, from the viewpoint of each channel, the
sequence of I/O events in a given run of a program is the
same in the original run and in the multi-executed run.

Transparency at top level: In addition, we note another
transparency property, which applies, for example, to pro-
grams with no intermediate input: the externally-observable
program behavior at the top security level is the same for
the original and securely multi-executed runs. This property
can be seen from Figures 1 and 2. Clearly, the original run
of the program in Figure 1 and the high run of the multi-
executed program in Figure 2 get the same inputs. Hence,
the high output behaviors are the same no matter whether
the original program is secure or not.

We now turn to the cons of secure multi-execution.
Coarse-grained labels: In work on secure multi-

execution so far, communication channels are provided with
a single security label. This is often too coarse-grained: for
example, the presence of a message might be public but
the content is secret. This granularity might be useful for
statistics services that might be counting different types of
events without revealing their content. For example, Google
Analytics is routinely used for varios types of counting: how
many clicks on the page, how many times a video is played,
and how many visitors have viewed a page.

Devriese and Piessens [DP10] assume total input envi-
ronments: that the input is always present. This does not
allow modeling scenarios where the presence of secret input
is secret (for example, whether or not the user visits a



health web site). Bielova et al. [BDMP11a] allow non-
total environments but at the price of ignoring information
leaks through termination behavior (targeting termination-
insensitive noninterference [VSI96]). This implies that the
leaks as in the example with the health site are still ignored.

This motivates the need for fine-grained secure multi-
execution. We lift the assumption on total input environ-
ments and introduce fine-grained labels for communication
channels, where the levels of presence and content of mes-
sages are distinguished.

Restrictive scheduling: With the exception of work by
Kashyap [KWH11], secure multi-execution heavily relies on
the low-priority scheduler that lets low computation run until
completion before the high run gets a chance to run. The
low-priority scheduler is both at the heart of the soundness
results by Devriese and Piessens [DP10] and at the heart
of FlowFox [GDNP12], an extension of FireFox to enforce
secure information flow in JavaScript. The security theorem
in the abstract setting of secure multi-execution [DP10]
takes advantage of the low-priority scheduler and establishes
timing-sensitive security. This is intuitive because the last
access of low data occurs before any high data is accessed.
Whenever the timing behavior is affected by secrets, there
is no possibility for the attacker to inspect the difference.

However, the situation is different in the presence of
handlers. The low-priority scheduler does not scale because
it is not possible to extend the low-priority discipline over
multiple events—simply because it is not possible to run
the low handlers that have not yet been triggered. As a com-
promise, FlowFox [GDNP12] multi-executes JavaScript with
the low-priority scheduler on a per-event basis. However, as
illustrated by a leak in Appendix A, this strategy is at the
cost of timing-sensitive security. All we need to do is to
set a low handler to execute after the high run of the main
code has finished. Then the low handler can leak via the
computation time taken by the high run.

This motivates the need for flexible scheduling strategies
and the need for (fair) interleaving of the runs at different
levels, as pursued in this paper.

Declassification: Declassification is challenging be-
cause secure multi-execution is based on separating informa-
tion at different security levels. Feeding secret information
to a public run might introduce unintended leaks. Coming
back to the example of tracking and statistics, we might want
to track the popularity of items in a shopping cart or track
various average values for transactions.

This motivates the need for declassification in secure
multi-execution. The event of declassification should not
leak information about the context (branching on a secret
and declassifying in the body would leak the boolean value
of the secret). It turns out that the support for fine-grained
communication channels provides us with a natural treat-
ment of declassification. Indeed, declassification is about
communicating a secret value from the high run to the low

run, but without leaking through the presence of the com-
munication event. Exactly this is provided by channels with
high content and low presence! Hence, a declassification
event corresponds to output on a high-content low-presence
channel (in view of the high run), and to input on high-
content low-presence channel (in the view of the low run).

Order of events modified: The transparency guarantees
of secure multi-execution are per channel, allowing the order
of events to be modified across different channels. This leads
to unexpected results in an interactive setting.

This motivates the need for stronger transparency, where
the behavior of secure programs is unmodified across the
different levels. We show how to achieve this by careful
scheduling of the runs at the different levels.

Silent failure: The behavior of secure and insecure
programs is silently modified. As mentioned above, there are
cases when the run at the top security level is immune to
such modifications as it never gets dummy values. However,
the behavior at less restrictive levels might be modified,
leading to loss of important functionality. This directly
connects to undiscovered attacks, addressed below.

Undiscovered attacks: Related to the silent failure
point above, secure multi-execution “repairs” problematic
executions on the fly, with no means to identify if there
were any attempted attacks and what caused such attacks.

This motivates an enhancement of secure multi-execution
that allows for detecting attacks. Intuitively, we introduce
barrier synchronization of the runs at the different security
levels and track the consistency of the values they produce.
In the two-level lattice, we check if the low output produced
by the low run matches the value produced by the high
run (which is the same as the low output of the original
program). If they are inconsistent, we have found an attack.
Full transparency is the key for this result because it guar-
antees that secure programs must have exactly the same I/O
behavior as their securely multi-executed versions.

Nondeterminism: Nondeterminism needs to be repro-
duced for the executions at different levels. Although this
has not been explicitly handled in previous work, a natural
possibility is to assign security level to the source of
nondeterminism and propagate it to the relevant executions
in a fashion similar to propagating inputs.

Dummy values: Dummy values are fed into executions
that are not authorized to have access to sensitive input.
An unfortunate choice of values might lead to the program
crashing. Defensive programming is then needed to ensure
that programs are stable under variation of allowed input.

Performance: Executing the program several times
implies obvious performance overhead. At the same time,
secure multi-execution benefits from multicore architectures,
in particular when the number of executions is less than the
number of cores [DP10]. Also, as we discuss in Section VII,
optimizations are possible for simulating multiple executions
by computing on enriched values [AF12].



III. FRAMEWORK

We lay the foundation for our technical contributions
outlined in the introduction by presenting a framework for
information-flow security of interactive programs [OCC06],
[CH08], [BPS+09], [RS11], [RHS12].

A. Interactive programs
Our model of computation is a labeled transition system

(LTS). An LTS is a triple (S,L,−→), where S is a set (of
states), L is a set (of labels), and −→⊆ S×L×S (a labeled
transition relation). Computation occurs in discrete steps
(transitions), each taking a (unspecified) unit of time. s l−→ s′

iff (s, l, s′) ∈−→, and s l−→ iff s l−→ s′ for some s′.
The systems we consider in this paper interact with their

environment through channel-based message-passing. Such
systems have three kinds of effects: (message-)input, output,
and silence. The two latter effects are “productions”, referred
to as output o, and the first effect is a “consumption”,
referred to as input i. Collectively, these are actions a.

a ::= i | o i ::= c?v o ::= c!v | •

Here, c?v (resp. c!v) denotes a message received (resp.
sent) on channel c carrying value v, and • denotes a non-
interaction. c and v range over the (nonempty) sets C and
V resp.. These effects are the only external interface to our
systems; systems are “black boxes” in every other respect.

Definition III.1. An input-output LTS (LTSIO) is an LTS
(S,L,−→), with L ranged by a.

Practical languages native to this paradigm include Erlang
and JavaScript. Bohannon et al. give the semantics of a
JavaScript-like language as an LTSIO in [BPS+09] and
Rafnsson et al. give the semantics of an imperative language
with I/O (used in our examples) as an LTSIO in [RHS12].

One element ? ∈ V (blank) is distinguished. When
s
c??−−→ s′, then s has waited one time unit for an input on c

without receiving one. c!? has no specific meaning.

Definition III.2. Let λ = (S,L,−→) be an LTSIO.
1) λ is input-neutral iff
∀s ∈ S, c � (∃v � s c?v−−→) =⇒ (∀v � s c?v−−→).

2) λ is input-blocking iff
∀{s, s′} ⊆ S, c � s c??−−→ s′ =⇒ s′ = s.

3) λ is deterministic iff
a) ∀s ∈ S, a1, a2 � s

a1−→ ∧s a2−→ ∧a1 6= a2 =⇒
∃c, v1, v2 � a1 = c?v1 ∧ a2 = c?v2, and

b) ∀{s, s1, s2} ⊆ S, a � s
a−→ s1 ∧ s

a−→ s2 =⇒ s1 = s2.

Pt. 1 states that if s is ready to perform input, s be recep-
tive to any v. Pt. 2 states that input is a blocking operation.
Pt. 3a says if s c?v−−→, then s

a−→ iff a ∈ {a?v | v ∈ V}, and
implicitly, if s o−→, then s a−→ iff a = o. Pt. 3b says s has no
internal nondeterminism. Unless stated otherwise, any s we
consider in this paper is from a λ satisfying pt. 1, 2 and 3.
We discuss the assumption of pt. 2 further in Section IV.

B. Traces

A trace is a (finite) list of actions, denoted ā. We write
s
ā−→ sn if s a1−→ s1

a2−→ · · · an−−→ sn for some s1, . . . , sn and
ā = a1. · · · .an. Let ā�? , ā�! and ā�c denote the projection
of ā to its input-, output- and c-messages, respectively. E.g.,
if ā = c?1.c′!2.c′??.c!4, then ā�? = c?1.c′??, ā�! = c′!2.c!4,
and ā�c= c?1.c!4. ā�c extends to ā�C for C ⊆ C in the
obvious way. We write ā�x1,...,xn as short for ā�x1 · · · �xn ;
we refer to each xj as a projection predicate. With ā defined
as above, ā�c,? = ā�c�? = c?1. We write x̄ ≤ x̄′′ when, for
some x̄′, x̄′′ = x̄.x̄′. For a relation R, ā Rx1,...,xn

ā′ is short
for (ā�x1,...,xn

)R (ā′ �x1,...,xn
). Note that (Rx1,...,xn

)x0
=

Rx0,...,xn . With ā defined as above, ā ≤!,c c?3.c!4.c!5.

C. Observables

The observables of our programs are its effects. The
observability of a message is given by the security level
associated with the channel carrying the message. As fore-
shadowed earlier, we assume a lattice (L,v), with L ranged
by `, of security levels which express levels of confidential-
ity. Each channel is labeled with two security levels; δ(c) is
the level of the presence of a message on c, and γ(c) is the
level of the content or value of a message on c. In examples,
we frequently represent a channel by its security labels;
we then write γ(c)δ(c) in place of c (in code, γ(c)δ(c)). A
classic example is the two-level lattice LLH = {L,H} with
v= {(L,L), (L,H), (H,H)}, L for “low” confidentiality, H
for “high”. We let H, M, L denote HH, HL and LL, resp..
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Figure 3: Original execution
with fine-grained security

Figure 3 illustrates the
flow of information in the
case of the two-level lattice.
Input on M is depicted in-
between the high and low
input. The presence of such
an input is low (this depen-
dency on low is illustrated
by the dashed line) while the content is high (this depen-
dency on high is illustrated by the solid line). Similarly,
output on M is depicted in-between the high and low output.
Its presence is observable at low level (cf. the dashed arrow),
and its value is observable at high level (cf. solid arrow).

The security labels express who can observe what. An ob-
server is associated a security level `. An `-observer is capa-
ble of observing the presence (resp. content) of a message on
c iff δ(c) v ` (resp. γ(c) v `). ā�` removes `-unobservable
parts of actions in ā. For ā = •.L?0.H!1.M??.M!2.H??.•,
ā�L= •.L?0.•.M?d.M!?.•.•. H!1 got replaced with • since
communication on H is unobservable to a L-observer (thus
looks like a •). M!2 got replaced with M!d (for a fixed
d ∈ V), since a L-observer only observes presence of
messages on M (all a ∈ {M!v | v ∈ V} look the same).

Timing and progress: Eventually we enforce a property
stating that variations in unobservable inputs to a system do
not cause an `-observable difference in the traces the system



can perform. How we define trace equivalence defines the
class of attackers such a property guarantees security against.
We consider two classes of attackers: timing- and progress-
sensitive ones respectively. To both, a blank input is unob-
servable since no message is passed. ā�? replaces all c??
with •. With ā defined as above, ā�?= •.L?0.H!1.•.M!2.•.•.

A timing-sensitive (e.g. [Aga00], [DP10]) attacker mea-
sures time between observables in a trace. ā �~• removes
trailing • from ā. E.g. ā �~•= •.L?0.H!1.M??.M!2.H??.
Define timing-sensitive `-equivalence '` as =?,`,~•. Consider
in H h ; out L 0

Since this program can perform traces ā1 = H??.H?1.L!0
and ā2 = H?1.L!0, this program is not secure against
a timing-sensitive L-observer since ā1 �?,L,~•= •.•.L!0 6=
•.L!0 = ā2�?,L,~• (L!0 is produced faster in the latter trace).

A progress-sensitive (e.g. [OCC06], [AS09], [RS11]) at-
tacker observes whether there are more observables forth-
coming in a trace. ā �• removes all • from ā. With ā as
above, ā �•= L?0.H!1.M??.M!2.H??. We define progress-
sensitive `-equivalence ≈` as =?,`,•. ā1 and ā2 are not
evidence that the above program is insecure against progress-
sensitive `-observers since ā1 �?,L,•= L!0 = ā2 �?,L,• (in
both traces, L!0 eventually appears). Note that ('`) ( (≈`).
Thus, a progress-sensitive (timing-insensitive) attacker is
strictly weaker than a timing-sensitive one.

D. Environments

The inputs to our systems come from the environment
in which our systems run. Clark and Hunt [CH08] have
demonstrated that when performing security analysis of
programs, an environment does not need to be adaptive in
any way to provoke a particular (leaking) behavior from
a deterministic program. It is therefore sufficient for our
purposes to consider environments represented as a stream
(infinite list) of inputs for each input channel. So, an
environment I is a mapping from input channels to the
stream of inputs the environment provides on that channel.
Since streams can contain blanks, our framework considers
attacks powered by delayed input.

Input streams restrict which traces are possible; ā is
consistent with I , written I |= ā, iff for all c, with Ic = I(c),

∀ā′ ≤ ā � ∃ī′ ≤ Ic � ( |ā′| = |̄i′| ∧ ā′ ≤?,c,?,• ī
′

∧ (ā′ = .c?? =⇒ ī′ = .c??) ).

Read this as “all i in ā came from I , and ? is read only when
I had no value ready to be read” ( is a wildcard). Running
s under I constrains the traces which s can perform; s
performs ā under I , written I |= s

ā−→, iff s ā−→ and I |= ā.
Consistency implies that I queues arriving input. Consider

in c x ; while |x| { x = |x| - 1 } ; in c y

Let s be the LTSIO state of this program and let I1, . . . , I5
be given such that I1c = (c??)∞, I2c = c?0.c?0.(c??)∞,
I3c = c?2.c?0.(c??)∞, I4c = c?0.c??.c??.c??.c?0.(c??)∞,

I5c = c?2.c??.c??.c??.c?0.(c??)∞. Then I1 |= s
(c??)n−−−−→

for all n ∈ N, I2 |= s
c?0.•.c?0−−−−−−→, I3 |= s

c?2.•.•.•.•.•.c?0−−−−−−−−−−→,
I4 |= s

c?0.•.c??.c??.c?0−−−−−−−−−−→, I5 |= s
c?2.•.•.•.•.•.c?0−−−−−−−−−−→.

Stream equivalence becomes: I1 '` I2 (resp. I1 ≈` I2)
iff ∀c � δ(c) v ` =⇒ I1(c) '` I2(c) (resp. I1(c) ≈` I2(c)).

Totality: An environment is total if it always provides
a system with input whenever the system needs it. In our
framework, I is total if ? does not occur in any Ic. Previous
work on security for interactive programs [OCC06], [CH08]
assume that environments are total. However, as we have
demonstrated previously [RHS12], this assumption limits
(undesirably) the space of possible attacks on input-blocking
interactive programs, since the presence of a message can
vary depending on high data. Consider the program in
Section III-C. Let I1H = H?0.(c??)∞ and I2H = I1c =
I2c = (c??)∞ for all c 6= H. While this program can
perform H?0.L!0 under I1, the program cannot perform an
≈L-equivalent trace under I2. Since a program can encode
a bit in the presence of a message, these attacks becomes
crucial in an interactive setting. To emphasise the gravity
of the matter, here are three interactive programs [RHS12],
each secure under total environments, which, when run in
parallel, leak the input on H, bit by bit, on L, by encoding
the received value in the presence of H0 and H1 messages.
while 1 { in H1 x ; out L 1 ; out H′1 42 }

while 1 { in H0 x ; out L 0 ; out H′0 42 }

in H h;
for b in bits(h) {
if b { out H1 42 ; in H′1 x }
else { out H0 42 ; in H′0 x }

}

In short, the lack (resp. delay) of input impedes on the
progress (resp. timing) behavior of input-blocking interactive
systems. To guarantee protection against attacks powered
by varied input presence, nontotal environments (e.g. our I)
must be considered. This in part motivates our fine-grained
security types; since no low observables are allowed to occur
after a high input, the only way for an input-blocking system
to input a high value before performing low observables is
if the presence level of the input is low [RHS12].

IV. FINE-GRAINED SECURE MULTI-EXECUTION

The opening series of our contributions develops a gen-
eralization of SME [DP10] with respect to several dimen-
sions. We lift the assumption on the totality of the input
environment (that there is always assumed to be input) and
on the cooperative scheduling. Furthermore, we distinguish
between security levels of presence and content of messages.
In addition, we generalize SME to arbitrary deterministic
LTSIO and strengthen the guarantees SME provides.

By design, our formalization of SME ensures that the `-
observable part of the interaction on channels with ` pres-
ence depends only on `-observable parts of input on channels
with v ` presence, thus enforcing a noninterference policy.
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Figure 4: SME with fine-
grained security

Figure 4 illustrates the intu-
ition in our handling of the
channels with fine-grained
security levels for the two-
level lattice. In addition to
propagating low input to
the high run (as in Fig-
ure 2), we propagate to the
high run the fact that an M
message has arrived to the
low run. This allows consis-
tent processing of the message. At the output, the presence
of an M message is observable at the low level (cf. dashed
output arrow). On the other hand, the value of an M output
is produced by the high run (cf. solid output arrow).

Our SME of s runs, concurrently, a copy of s for each
level in the security lattice. The SME of s can input on c iff
the δ(c)-run can input on c. An `-run which can consume
a c-input with δ(c) 6v ` is fed a (constant, pre-determined,
input-independent) default value, denoted d, by SME. An `-
run which can consume its nth c-input with δ(c) @ ` gets a
copy of the nth input consumed by the δ(c)-run, unless δ(c)
is yet to consume n c-inputs, in which case the `-run blocks
until the δ(c)-run has done so. However, if γ(c) 6v `, then
the `-run is fed d instead of the value in the nth c-input.
The SME of s can output on c iff the δ(c)-run can output
on c. A c-output produced by a `-run for which δ(c) 6=
` is discarded by SME (as opposed to being sent to the
environment). When an `-run produces its nth c-output with
` = δ(c), this output is sent straight to the environment,
except when δ(c) 6= γ(c); in that case SME first checks
whether the γ(c)-run has already produced its nth c-output.
If so, then the value of the nth c-output produced by the
SME of s becomes the value of the nth c-output produced
by the γ(c)-run. Otherwise, the value becomes d.

We now formalize SME for arbitrary s satisfying the
assumptions in Definition III.2. Concurrent executions of s
are scheduled by a scheduler.

Definition IV.1. A scheduler σ is a LTS with labels ranged
by `. σ is deterministic iff ∀`, `′ � σ `−→ ∧σ `′−→ =⇒ ` = `′.
σ is fair iff ∀¯̀� σ

¯̀
−→ =⇒ ∀` � ∃¯̀′ � σ

¯̀.¯̀′.`−−−→.

Unless stated otherwise, σ is deterministic and fair. An
example of deterministic and fair schedulers is the round-
robin schedulers. For instance, for LLH, a scheduler which
infinitely repeats H.L or L.H is a deterministic fair scheduler.

The semantics of SME is given in Figure 5. A SME state
is a triple (ā, σ,S ), where ā is the list of actions which the
SME has performed so far, σ the state of the scheduler, and
S contains the state of the `-runs. S maps each security level
` to a pair (ā`, s`), where ā` is the list of actions which the
`-run has performed so far, and s` is the current state of the
`-run. For a given σ, the SME of s, SME(σ, s), is defined
as SME(σ, s) = (ε, σ, λ` → (ε, s))). The derivation of any

SME state transition begins with the rule

ā |= (σ,S )
a−→ (σ′,S ′)

(ā, σ,S )
a−→ (ā.a, σ′,S ′)

log

The purpose of (log) is to keep track of the interaction ā
which SME(σ, s) has had with the environment. Note that

SME(σ, s)
ā−→ (ā′, σ′, s′) ⇐⇒ ā = ā′,

so we sometimes omit the trace label on a SME transition.
We put ā on the left side of “|=” in the next layer of the
semantics, Figure 5b, to show that this layer only reads ā.
The rules at this layer are mainly responsible for, by use
of σ, deciding which `-run takes a step next, using the
rules in the third layer, Figure 5a. This layer is responsible
for hiding from the previous layer all the different ways
which an `-run can take a step without interacting with
the environment ((dead), (silence), (old-o), (old-i)), and
signaling to the previous layer when the `-run requires I/O
with the environment to proceed ((new-o), (new-i)). Each
rule at this level appends to the `-run trace the action the
`-run performed during the step (not necessarily the same
action as the one performed by the SME state). We equate
a terminated `-run with an infinitely silent one, as indi-
cated by (dead) (not making terminated runs unschedulable
excludes several timing attacks described by Kashyap et
al. [KWH11]). SME stores output on channels with presence
6= ` without forwarding it to the environment, as per (old-o).
(old-i) covers multiple scenarios for not inputting from the
environment on c. When δ(c) 6v `, input d. When δ(c) v `,
this rule is only applicable if the `-run has not already read
all the c-inputs which the δ(c)-run has read. When γ(c) v `,
input the same value received from the environment when
the δ(c)-run performed the corresp. input action. Otherwise,
input d instead. (new-i) indicates that the `-run requires input
to proceed, and for the value v received from the previous
layer, indicated on the transition label, instead feeds d to the
`-run iff v 6= ?∧ γ(c) 6v `. The previous layer has two rules
for this scenario. When δ(c) @ `, then the `-run blocks until
the δ(c)-run reads on c, by (block-i). When δ(c) reads on c,
the input is fed to every w δ(c)-run blocking on c, by (i).
(new-o) notifies the previous layer that the `-run has a fresh
output for the environment. Rule (o) in the previous layer
handles this scenario, checking if the γ(c)-run has already
provided content for this output, and if so, replaces the value
in the output with the value in the corresp. γ(c)-run c-output.

When γ(c) 6= δ(c), the output value is replaced by
d iff γ(c) has not yet produced the corresponding value.
Having the δ(c)-run instead wait for the γ(c)-run to reach
the corresp. c-output, or giving responsibility of producing
the c-output to the γ(c)-run, can introduce a leak:
in M h; l := 0; while l != h {l := l+1}; out M h

Here the time it takes for the H-run to produce the M-output,
and whether H produces the output at all, depends on h.



s X−→
(ā, `) |= (ā`, s)

•−→ (ā`.•, s)
dead

s
c?v−−→ s′ ā`.c?v ≤?,`,•,?,c ā if γ(c) 6v ` then v = d

(ā, `) |= (ā`, s)
•−→ (ā`.c?v, s

′)
old-i

s
•−→ s′

(ā, `) |= (ā`, s)
•−→ (ā`.•, s′)

silence
s
c!v`−−−→ s′ δ(c) = ` if γ(c) = ` then v = v` else v = d

(ā, `) |= (ā`, s)
c!v−−→ (ā`.c!v`, s

′)
new-o

s
c!v−−→ s′ δ(c) 6= `

(ā, `) |= (ā`, s)
•−→ (ā`.c!v, s

′)
old-o

s
c?v`−−−→ s′ ā` =?,`,•,?,c ā if v = ? ∨ γ(c) v ` then v` = v else v` = d

(ā, `) |= (ā`, s)
c?v−−→ (ā`.c?v`, s

′)
new-i

(a) SME `-stepper

σ
`−→ σ′ (ā, `) |= S(`)

•−→ (ā`, s)

ā |= (σ,S)
•−→ (σ′,S [` 7→ (ā`, s)])

•
σ

`−→ σ′ (ā, `) |= S(`)
c??−−→ (ā`, s) δ(c) @ `

ā |= (σ,S)
•−→ (σ′,S [` 7→ (ā`, s)])

block-i

σ
`−→ σ′ (ā, `) |= S(`)

c?v−−→ δ(c) = ` S ′(`′) = if ` v `′ ∧ (ā, `′) |= S(`′)
c?v−−→ (ā′, s′) then (ā′, s′) else S(`′)

ā |= (σ,S)
c?v−−→ (σ′,S ′)

i

σ
`−→ σ′ (ā, `) |= S(`)

c!v`−−−→ (ā`, s) S(γ(c)) = (āγ , ) if ∃ā′, vγ � ā.c!v` =?,`,•,!,c ā
′.c!vγ ≤!,c āγ then v = vγ else v = v`

ā |= (σ,S)
c!v−−→ (σ′,S [` 7→ (ā`, s)])

o

(b) SME `-chooser

Figure 5: Semantics of SME

While Figure 5b says that SME controls each step of
each `-run, in practice the responsibility of SME can be
distributed to the `-runs as follows. Each `-run is made
responsible for environment I/O on all c ∈ δ−1(`), since
SME(s) performs I/O iff the `-run of s performs it. Each
`-run makes input on each c ∈ δ−1(`) and output on each
c ∈ γ−1(`) available in a shared resource (e.g. memory) s.t.
A `-runs can obtain a copy of the input when they need
it, and an δ(c)-run can obtain the actual value to output on
c. Each `-run processes (after sharing, when ` = δ(c)) d

in place of the inputted value when δ(c) v ` @ γ(c), and
outputs d when the γ(c)-run is yet to share the value to
put into the output when δ(c) @ γ(c) = `. This approach
is taken in a SME benchmark by Devriese and Piessens
[DP10]. Forcing `-runs to diverge and recording full traces
can be avoided [KWH11], [DP10]. This approach is sound
as long as the `-run threads cannot influence the scheduler.

While s is input-blocking, SME(s) is not; varied presence
of input on c ∈ γ−1(`) cannot impede on progress or
timing of `′-runs where ` 6v `′. This effect is achieved by
c?? actions; if SME(s) is in a state where an `-run wants
input on c, and I does not have one ready (yet), the `-run
can do a c??-action, allowing SME(s) to pass control to
another `′-run. In contrast, the formalization (as opposed to
the benchmark implementation) of SME by Devriese and
Piessens [DP10] is input blocking; if an `-run is scheduled
before a `′-run with ` 6v `′, the nonpresence of input on
c ∈ δ−1(`) can interfere with the `′-run. This hinders sound
scheduling of runs for arbitrary nonlinear lattices.

A. Soundness

SME enforces the following property: Under observably
equivalent environments, the respective sets of traces pro-
duced under any of them are observably equivalent.

Definition IV.2. s is timing-sensitive, progress sensitive
noninterfering (s ∈ TSNI) iff ∀`, I1, I2 � I1 '` I2 =⇒
∀ā1 � I1 |= s

ā1−→ =⇒
∃ā2 � I2 |= s

ā2−→ ∧ ā1 '` ā2.

Theorem IV.3. ∀σ, s � SME(σ, s) ∈ TSNI.

In contrast to Devriese and Piessens [DP10], who prove
soundness for a cooperative scheduler for linear lattices,
and to Kashyap et al. [KWH11], who prove soundness
for two round-robin schedulers (the “Multiplex-2” and
“Lattice-based” approaches), we prove a more general result:
soundness for arbitrary deterministic and fair schedulers.
While Devriese and Piessens claim their scheduler, called
selectlowprio, which executes the `-runs to completion
in increasing order by v, works for any linearized lat-
tice, Kashyap et al. have shown that selectlowprio intro-
duces a timing dependency between `-runs at incompara-
ble levels in nonlinear lattices. For instance, with L =
LAB

def
= {H, A, B, L} and v being the reflexive transitive closure

of {(L, A), (L, B), (A, H), (B, H)}, with linearization L v A v
B v H and d = 0, the time it takes for BB!1 to occur is,
under selectlowprio, a function of the input on AA.

in AA a; while a != 0 { a := |a| - 1 }; out BB 1

In the presence of nontotal environments, the situation is
even worse; here the presence of input on AA leaks to BB.
in AA a; out BB 1

While swapping A and B in the linearization resolves the
issue in this program, the following program has no lin-
earization of L for which selectlowprio schedules soundly.

in AA a ; out BB 1 ; in BB b ; out AA 1

We show in Appendix A that the assumption of termination
is problematic when program input arrives arbitrarily in time.



The proof of Theorem IV.3 is a corollary of the following
lemma, which can be seen by removing the last two elements
in the conjunction in the conclusion of the lemma, and com-
paring the result with Definition IV.2. The details of this, and
all other proofs, are in the full version of this paper [RS13].
We write S1 =` S2 iff ∀`′ v ` � S1(`′) = S2(`′).

Lemma IV.4. ∀s, σ, `, I1, I2 � I1 =` I2 =⇒
∀ā1, σ1,S1 � I1 |= SME(σ, s) −→ (ā1, σ1,S1) =⇒
∃ā2, σ2,S2 � I2 |= SME(σ, s) −→ (ā2, σ2,S2) ∧
ā1 =` ā2 ∧ S1 =` S2 ∧ σ1 = σ2

Such a strong correspondence is achievable since, for
each `′ v `, the `′-run of s, in I1 |= SME(σ, s) and
I2 |= SME(σ, s), behaves as I�`′ |= s, where

(I�`′ )(c) =

{
(c?d)∞ , if δ(c) 6v `′
I(c)�` , otherwise.

(While for δ(c) v `′, the number of c?? preceding a c?v
of an `′-run in Ij |= SME(σ, s) compared to I �`′ |= s can
differ due to σ, this number is the same in I1 |= SME(σ, s)
compared to I2 |= SME(σ, s). Since s is input-blocking, all
three are in the same state at the time of the non-blank
read, and consume the same input, by I �`′ ). Thus, since
I1 |= SME(σ, s) and I2 |= SME(σ, s) are both run under
the same σ, after any number of transitions, the `′-runs will
in both runs have performed the same number of actions,
consumed the same inputs, produced the same outputs, and
be in the same state.

B. Transparency

We show that SME does not adversely modify the I/O
behavior of a program for which changes in `-unobservable
input does not affect the `-observable parts of the I/O
behavior of the program. We obtain this class of programs
by weakening TSNI to a timing-insensitive variant by re-
placing, in Definition IV.5, ’'`’ with ’≈`’.

Definition IV.5. s is timing-insensitive, progress sensitive
noninterfering (s ∈ PSNI) iff ∀`, I1, I2 � I1 ≈` I2 =⇒
∀ā1 � I1 |= s

ā1−→ =⇒
∃ā2 � I2 |= s

ā2−→ ∧ā1 ≈` ā2.

Let s ∈ PSNI, `, I and σ be arbitrary. In s and SME(σ, s),
the interaction on `-presence channels is `-equivalent.

Theorem IV.6. ∀s ∈ PSNI, I, ā�

a) I |= s
ā−→ =⇒

∃ā′ � I |= SME(σ, s)
ā′−→ ∧∀` � ā ≤?,`,δ−1(`),• ā

′

b) ∀σ � I |= SME(σ, s)
ā−→ =⇒

∃ā′ � I |= s
ā′−→ ∧∀` � ā ≤?,`,δ−1(`),• ā

′

When all `-presence outputs also have `-content, the `-
presence interaction in s and SME(s) is the same. This is
an improvement on Theorem 2 in [DP10] which establishes
the a)-part of Theorem IV.6 for the interaction on each

channel (as opposed to, for each `, the interaction on all
channels with presence level `), and only for terminating
runs of termination-sensitive s. Furthermore, under LAB,
selectlowprio yields a nontransparent run for the following
program, as no BB!1 occurs if no input on AA arrives.

out BB 1; in AA a

However, when s outputs on c with γ(c) A δ(c),
SME(σ, s) might replace the value in its corresponding
output with d. Thus, the timing behavior of s ∈ PSNI
can impede the ability of a σ to soundly schedule runs in
SME(σ, s) such that the γ(c)-run reaches the output before
the δ(c)-run does irrespective of previously inputted values.
In TSNI programs, however, all `-runs for which δ(c) v `
will reach an output on c after the same number of reduction
steps. This includes the γ(c)-run, since δ(c) v γ(c). Thus,
if we ensure that any `-run never “outruns” its parent-runs,
we can ensure that the content-provider of an output reaches
the output before its presence-provider does. It is, however,
not sufficient to require, for instance, that at any given point,
H has been scheduled more often than L, as the H-run can
waste its turns blocking on channels with presence levelv H.
The following predicate, when invoked as φ(`H, `L, 0, ¯̀),
yields 1 when `H, a parent of `L, has been scheduled in
this manner in ¯̀, and 0 otherwise.

φ( , , , ε ) = 1
φ(`H, `L, bHseen, `.¯̀) | ` = `H = φ(`H, `L, 1, ¯̀)

| ` = `L ∧ bHseen = φ(`H, `L, 0, ¯̀)
| ` = `L ∧ ¬bHseen = 0
| otherwise = φ(`H, `L, bHseen, ¯̀)

Definition IV.7. σ is a high-lead scheduler (σ ∈ highlead )
if ∀¯̀� σ

¯̀
−→ =⇒ ∀`L, `H � `L @ `H =⇒ φ(`H, `L, 0, ¯̀).

An example of a high-lead scheduler is the round-robin
scheduler which schedules levels in (increasing) order of
maximal descendancy from the top element in the secu-
rity lattice (ties broken arbitrarily). For instance, for L =
{H, A, B, C, L} and v being the reflexive transitive closure
of {(L, C), (L, A), (C, B), (A, H), (B, H)}, σ which infinitely
repeats H.B.A.C.L or H.A.B.C.L is a high-lead scheduler. It
is for these schedulers that, in s ∈ TSNI and SME(σ, s),
the interaction on `-presence channels is the same, for all `.

Theorem IV.8. ∀s ∈ TSNI, σ ∈ highlead , I, ā�

a) I |= s
ā−→ =⇒

∃ā′ � I |= SME(σ, s)
ā′−→ ∧∀` � ā ≤?,δ−1(`),• ā

′

b) I |= SME(σ, s)
ā−→ =⇒

∃ā′ � I |= s
ā′−→ ∧∀` � ā ≤?,δ−1(`),• ā

′

Thus, if SME puts a d in an M output when run using
σ ∈ highlead , then this must have been done to prevent a
(timing or progress) leak – a desired effect.



V. DECLASSIFICATION

The challenge for declassification in SME is limited
communication of information from the high to the low run.
This is non-trivial as SME is originally designed to prevent
any such leaks. This section demonstrates how information
can be intentionally released in SME without violating the
guarantees SME was originally designed to provide.

P	  

PL	  

PH	  

H H

L	   L	  

H H

L	   L	  

Figure 6: SME with declas-
sification

It turns out that the
communication model from
Section IV is an excellent
fit for secure communica-
tion between the runs at
different levels. A key de-
sired property is to prevent
the occurrence of declassi-
fication events from leak-
ing information about the
context while allowing in-
tended release of the value
to be declassified. This is
a convenient match with our model that distinguishes the
security levels of presence and content. The core idea is
depicted in Figure 6. Declassification essentially corresponds
to routing an M output from the high run into the low run.

A release policy ρ is a subset of A. It indicates which
information releases are allowed. When ρ = ∅, then ρ
indicates a classical no-downward-flows policy, that is, one
with no information release. When (`, `′) ∈ ρ, then ρ permits
the downward flow from ` to `′. We write `0 ρ ` iff

∃`0, . . . , `n � `n v ` ∧ ∀0 ≤ i < n � (`i, `i+1) ∈ (v ∪ ρ).

Definition V.1. I1 and I2 are ρ-`-equivalent (I1 'ρ` I2) iff
I1 '` I2 ∧ ∀`′ � `′ ρ ` =⇒ I1 '`′ I2.

Definition V.2. s is ρ-releasing TSNI (s ∈ TSNIρ) iff
∀`, I1, I2 � I1 'ρ` I2 =⇒
∀ā1 � I1 |= s

ā1−→ =⇒
∃ā2 � I2 |= s

ā2−→ ∧ā1 '` ā2.

This noninterference policy only states what can be
released, without constraining where during control flow
information release is permitted. A common construct for
aiding programmers in specifying information release is
declassify(e, `), which declassifies the value of expres-
sion e (in the state in which this command is executed) to
level `. For instance, only b is intended to leak to L in the
below program pd1 under lattice LAB with ρ = {(B, L)}, but
it turns out a leaks as well; a TSNIρ-insecurity.

in AL a; in BL b ; // pd1
if a { l := declassify(b, L) }
out L l

The only interface SME has to its `-runs are action labels.
To transfer the right value from the H-run to be declassified
by the L-run, we need to enable the environment (in our case

SME) to obtain the value which an s wishes to declassify
from an action label, and (optionally) subsequently replace
it. To achieve this, we introduce release channels. Let R ⊆ C
be the release channels, ranged by r . Let C = C \R be the
communication channels, ranged by c. Let % : L2 → R
be bijective. % associates a release channel %(`, `′) with
each kind of information release (`, `′) (not all of which
are permitted by ρ). The following inference rule illustrates
how the semantics of declassification, in a simple imperative
language with I/O, can be given such that the environment
can (optionally) have a program declassify a completely
different value (through “in r”) than the value the program
announced it would declassify (through “out r v”). This
declassify construct is more fine-grained than the standard
one as it specifies both the from level ` and the to level `′

of the declassification operation.

m |= e = v %(`, `′) = r (m, out r v)
r !v−−→ (m′, skip)

(m,x := declassify(e, `→ `′))
r !v−−→ (m′, x := in r)

To restore the typical semantics of declassification (which
does not make declassification an effect) in an s, we simply
place s in a wrapper which makes communication on release
channels a feedback, as per F(s), given below. F(s) only
interacts with its environment on communication channels.

s
r !v−−→ s′

F(s)
•−→ F(r?v, s′)

s
r?v−−→ s′

F(r?v, s)
•−→ F(s′)

s
a−→ s′ @r , v � a = r !v

F(s)
a−→ F(s′)

This wrapper only has the desired effect if s communicates
on release channels in the expected manner, by always first
performing an output on r , and subsequently performing an
input on r . We define the class of such s now.

Definition V.3. An LTSIO λ = (S,L,−→) is an LTSIO with
release (LTSR

IO) iff

∀s ∈ S, r , v, ā� (s
ā.r !v−−−→ =⇒ ∃v′ � s ā.r !v.r?v′−−−−−−→)

∧(s
ā.r?v−−−→ =⇒ ∃v′, ā′ � ā = ā′.r !v′)

λ is an LTSIO without release (LTSC
IO) iff

∀s ∈ S � @r , ā, v � s ā.r !v−−−→ ∨s ā.r?v−−−→.
We write s ∈ LTSR

IO (resp. s ∈ LTSR
IO) iff s is a state in

some LTSR
IO (resp. LTSR

IO).

We consider only LTSR
IO and LTSC

IO s for the remainder
of this section; an s which is neither interacts on some r in
an undesired way. We require that ∀r � δ(r) = γ(r) ∧ ∃`′ �
%(γ(r), `′) = r . Read this as “r releases information from
γ(r) to `′.” The information release which r is responsible
for is permitted by the release policy, iff, (γ(r), `′) ∈ ρ.

The semantics of SME extended with release channels
(SMER) is given in Figure 7. It is parameterized by the
release policy ρ. By (r-not), any release action which is not
permitted by ρ is a feedback. By (r-d), when a target `-run of
a release reaches a release before the source γ(r)-run does,
d is released instead (same justification as for the treatment
of M-output in SME). By (r), if a valid release receiver



s
r !v−−→ s′

(ā, `) |= (ā`, s)
•−→ (ā`.r !v, s)

r-o s
r?v−−→ s′

(ā, `) |= (ā`, s)
r?v−−→ (ā`.r?v, s)

r-i

(a) SMER `-stepper; add Figure 5a rules w/ occurrences of c replaced with c.

σ
`−→ σ′ (ā, `) |= S(`)

r?v−−→ (ā`.r !v.r?v, s) ¬releaseok(r , `)

ā |= (σ,S)
•−→ (σ′,S [` 7→ (ā`.r !v.r?v, s)])

r-not releaseok(r , `) = (%−1(r) = (`′, ) ∈ ρ ∧ `′ ρ ` ∧ `′ 6v `).

σ
`−→ σ′ (ā, `) |= S(`)

r?d−−→ (ā`.r?d, s) releaseok(r , `) S(γ(r)) = (āγ , ) |āγ�!,r,• | < |ā`�!,r,• |

ā |= (σ,S)
•−→ (σ′,S [` 7→ (ā`.r?d, s)])

r-d

σ
`−→ σ′ (ā, `) |= S(`)

r?v−−→ (ā`.r !v`.r?v, s) releaseok(r , `) S(γ(r)) = (āγ .r !vγ . , ) |āγ�!,r,• | = |ā`�!,r,• |
if ( ∃`d, ād � S(`d) = (ād.r ! .r?d. , ) ∧ |āγ�!,r,• | = |ād�!,r,• | ∧ releaseok(r , `d) ) then v = d else v = vγ

ā |= (σ,S)
•−→ (σ′,S [` 7→ (ā`.r !v`.r?v, s)])

r

(b) SMER `-chooser; add Figure 5b rules w/ occurrences of c replaced with c.

Figure 7: Semantics of SMER

has already received d for this release, so does the `-run.
Otherwise γ(r) has already done the release, so the `-run
receives the right value.

A. Soundness

SMER is sound with regards to any release policy.

Theorem V.4. ∀s∈LTSR
IO, σ, ρ �SMER(σ, s, ρ)∈TSNIρ.

The proof of this theorem follows a similar pattern as the
proof of Theorem IV.3, utilizing a lemma which is near-
identical to Lemma IV.4.

SMER does not introduce an information release into a
program which does not already release information. The
following statements correspond to the conservativeness
principle of declassification [SS09] that stipulates that the
security condition for systems with no information release
is equivalent to baseline noninterference.

Theorem V.5. ∀s ∈ LTSR
IO � s ∈ TSNI =⇒ ∀ρ, σ�

SMER(σ, s, ρ) ∈ TSNI.

When no information release is permitted, Definitions V.2
and IV.2 coincide (I1 '∅` I2 becomes I1 '` I2).

Corollary V.6. TSNI∅ = TSNI.

SMER prevents all downward flows in all s which do not
announce information release through release actions. This
is a corollary of Theorem IV.3, since no step of in a trace
from s is derived using a rule from Figure 7.

Corollary V.7. ∀s∈LTSC
IO, σ, ρ � SMER(ρ, σ, s)∈TSNI.

B. Transparency

Information release can impede on transparency, even
in secure programs. By Corollary V.7, when s releases
information w/o announcing the release on a release channel,
the corresponding control in SMER(ρ, s) never receives the
declassified value. With ρ = {(H,L)}, consider this s.

in M h; out L h

We have s ∈ TSNIρ. However, the L-run in SMER(ρ, s)
never gets the H-value in the HL-input, and thus, SMER(ρ, s)
cannot be transparent. A similar problem arises when the L-
run reaches an information release from H before the H-run
does; then the L-run instead receives d. This occurs in the
following program pd2 if L is scheduled too often before H.
in M h ; // pd2
l := declassify(h, H->L) ;
out L l

It turns out that these are the only inhibitors for trans-
parency. We define the class of programs which only release
information through release channels. The definition makes
use of a wrapper which binds release channels internally.

s
r !v−−→ s′

B(ā, I, s)
•−→ B(ā.r !v, I, s′)

s
r?v−−→ s′ I |= ā.r?v

B(ā, I, s)
•−→ B(ā.r?v, I, s′)

s
a−→ s′ @r , v � a = r?v

B(ā, I, s)
a−→ B(ā.a, I, s′)

B(I, s) = B(ε, I, s)

Definition V.8. s is TSNI modulo release (s ∈ TSNImodR)
iff ∀I � (∀r � @ī � ī.r?? ≤ Ir ) =⇒ B(I, s) ∈ TSNI.

Let ρ(s) = {%−1(r) | ∃ā, v � s r?v.ā−−−→ ∨s r !v.ā−−−→} be the
releases of s. If ρ(s) ⊆ ρ, then SMER will not prevent any
declassifications; this enables transparency.

Theorem V.9. ∀s∈ (LTSR
IO∩TSNImodR),σ ∈ highlead ,I,ā�

a) I |= F(s)
ā−→ =⇒

∃ā′ � I |= SMER(ρ(s), σ, s)
ā′−→ ∧∀` � ā ≤?,δ−1(`),• ā

′

b) I |= SMER(ρ(s), σ, s)
ā−→ =⇒

∃ā′ � I |= F(s)
ā′−→ ∧∀` � ā ≤?,δ−1(`),• ā

′

Program pd2 satisfies TSNImodR. It is easy to see that
if σ ∈ highlead and ρ = {(H,L)}, then SMER(ρ, σ, s)
routes the value announced by the H-run (which is the
value received on M) to the L-run in the desired way, thus
yielding a transparent run. When ρ = ∅, SMER(ρ, σ, s)
stops the forbidden declassification, retaining soundness. In
program pd1, the SMER(ρ, σ, s) allows the declassification



but prevents the implicit flow of a at the same time! This
is a fruitful byproduct of the separation of computation
into `-runs; the B-run never obtains A-information, and thus
cannot leak it (not even implicitly). At last, SMER(ρ, σ, s),
with ρ = {(H,L)}, allows the announced declassification,
but stops the explicit flow, in the following program. This
indicates that SMER not only enforces what is released, but
also where in the program release takes place. We discuss
this further in Section VIII.

in M h1 ; in M h2 ;
l1 := declassify(h1, H->L) ;
l2 := h2 ;
out L l1 ; out L l2

VI. FULL TRANSPARENCY

This section shows how to achieve fully transparency
for secure multi-execution by barrier synchronization. Full
transparency, in contrast to per-channel or per-level trans-
parency, guarantees that our SME enforcement preserves the
I/O behavior of secure programs, including the ordering of
I/O messages. Thanks to such a strong property, we are able
to deploy SME to detect attacks.

The core idea is pictorially summarized in Figure 8.

P	  

PL	  

PH	  

H H

L	   L	  

H H

L	  

L	  ?

Figure 8: SME by barrier
synchronization

In contrast to Figure 2, we
are not ignoring the low
output produced by the high
run. Instead, we match it
with the low output pro-
duced by the low run. If the
program is secure, this ap-
proach guarantees that there
may not be any deviation in
this matching. Thus, if there
is a deviation, it must be
due to the insecurity of the
original program. From this deviation, we can construct a
counterexample against noninterference.

We formalize our approach for a two-level lattice in
Figure 9. While nothing inhibits the H-run from performing
non-L-presence actions (by (H-a) and (•)), a barrier forms
when the H-run reaches a L-presence action (by (H-block)).
The H-run then only proceeds once the L-run reaches a
L-presence action. When the L-run reaches a L-presence
action, and the H-run is yet to perform the corresp. action,
a barrier forms. The L-run then only proceeds once the H-
run has done one of two things. 1) reached an L-observable
action before advancing t steps beyond the L-run (by (L-a)),
or 2) not (by (L-timeout)). In 1), if the H-run reached a L-
observably different action, we note an attack in ᾱ1. In 2),
we note a timeout in ᾱ2 (which might be an attack). Input
streams are constructed from traces using ι, defined as

(ι(ā))c = (ā�?,?,c,• ).(c??)∞.

Definition VI.1. An attack α is a 4-tuple (`, I1, I2, ā1)
where I1 =` I2 and I1 |= ā1. α is an attack on s iff

1) I1 |= s
ā1−→, and

2) ∀ā2 � I2 |= s
ā2−→ =⇒ ā2 6≈` ā1.

A. Soundness

SMET enforces a timing-insensitive noninterference no-
tion. This is easily seen by observing that the traces produced
by I |= SMET(s) and I�L |= s are ≈L-equivalent.

Theorem VI.2. ∀s, σ � SMET(σ, s) ∈ PSNI.

By allowing the L-run to wait up to t steps for the H-run
to match an L-observable, SMET(s) introduces a timing leak
into s, and thus does not enforce TSNI. We note however
that SMET(σ, s) can be wrapped in a black-box timing
leak mitigator to alleviate this weakening of the soundness
guarantee [AZM10].

At the point where the H-run deviates from the L-run, the
H-run is “frozen” (to avoid leaks), becoming semantically
equivalent to a program producing • infinitely, by (conflict).
A more practical approach would be to instead have the
H-run behave like it would under SME(s) henceforth. We
hypothesize (but do not prove) that this modification of
SMET yields a sound enforcement.

B. Transparency

Modulo •, SMET(s) and s produce the same sequence of
I/O (up to an attack or timeout in SMET(s)). In contrast to
e.g. Devriese and Piessens [DP10], who swap the order of
outputs in the following two programs (linearization B v A),

out H 1 ; out L 1

out AA 1 ; out BB 1

the I/O correspondence is full. Furthermore, this result
guarantees transparency even when s is insecure.

Theorem VI.3. ∀s, σ, I, ā�
a) I |= s

ā−→ =⇒
@ā′ � I |= SMET(σ, s)

ā′−→ ( , , ε, ε)
∧ |ā′�?,• | ≤ |ā′�?,• | ∧ ā′ 6≤?,• ā

b) I |= SMET(σ, s)
ā−→ ( , , ε, ε) =⇒

∃ā′ � I |= s
ā′−→ ∧ ā ≈ ā′

It is easy to see that if s ∈ TSNI, then SMET never
generates attacks, and thus, s and SMET(σ, s) have the same
(that is, ≈L-equivalent) I/O behavior.

C. Attacks

Any match deviation found by SMET(s) (before a time-
out), forms the basis of a concrete proof that s 6∈ PSNI.

Theorem VI.4. ∀s, σ, I �I |= SMET(σ, s) −→ ( , , α, ε) =⇒
α is an L-attack on s.



s
a−→ s′ ā`.a ≤?,`,• ā

if a = c?v then if γ(c) 6v ` then v = d else v 6= ?

(ā, `) |= (ā`, s)
•−→ (ā`.a, s

′)
old

ā′.a′ ≤ ā δ(a′) = L ā′ ≈L āH ∀a � s a−→ =⇒ a 6=L a′

(ā,H) |= (āH, s)
•−→ (āH.•, s′)

conflict

s
c!v`−−−→ s′ ā` =?,`,• ā δ(c) v `

if γ(c) v ` then v = v` else v = d

(ā, `) |= (ā`, s)
c!v−−→ (ā`.c!v`, s

′)
new-o

s
c?v`−−−→ s′ ā` =?,`,• ā δ(c) v `

if γ(c) v ` ∨ v = ? then v` = v else v` = d

(ā, `) |= (ā`, s)
c?v−−→ (ā`.c?v`, s

′)
new-i

(a) SMET `-stepper; add (dead) and (silence) from Figure 5a
σ

H−→ σ′ (ā,H) |= S(H)
a−→ (āH, sH) δ(a) = H

ā |= (σ,S , ᾱ1, ᾱ2)
a−→ (σ′,S [` 7→ (āH, sH)], ᾱ1, ᾱ2)

H-a
(•) as in Figure 5b (with ᾱ1, ᾱ2

equal in states before & after •−→).
σ

H−→ σ′ (ā,H) |= S(H)
a−→ δ(a) = L

ā |= (σ,S , ᾱ1, ᾱ2)
a−→ (σ′,S , ᾱ1, ᾱ2)

H-block

σ
L−→ σ′ (ā,L) |= S(L)

aL−−→ (āL, ) δ(aL) = L S(H) = (āH, ) |āL|+ t ≥ |āH| (ā,H) |= S(H)
aH−−→ δ(aH) 6= L

ā |= (σ,S , ᾱ1, ᾱ2)
•−→ (σ′,S , ᾱ1, ᾱ2)

L-wait

σ
L−→ σ′ (ā,L) |= S(L)

aL−−→ (āL, sL) δ(aL) = L S(H) = (āH, ) |āL|+ t ≥ |āH| (ā,H) |= S(H)
aH−−→ δ(aH) = L

if (ā,H) |= S(H)
aL−−→ then a = aL ∧ ᾱ′1 = ᾱ

else if aL =L aH then a = aH ∧ ᾱ′1 = ᾱ
else a = aL ∧ ᾱ′1 = ᾱ1.(L, ι(ā.iL), ι(āL), āL)

ā |= (σ,S , ᾱ1, ᾱ2)
a−→ (σ′,S [L 7→ (āL, sL)], ᾱ′1, ᾱ2)

L-a

σ
L−→ σ′ (ā,L) |= S(L)

aL−−→ (āL, sL) δ(aL) = L S(H) = (āH, ) |āL|+ t < |āH|

ā |= (σ,S , ᾱ1, ᾱ2)
aL−−→ (σ′,S [L 7→ (āL, sL)], ᾱ1, ᾱ2.(L, ι(ā.aL), ι(āL), āL))

L-timeout

(b) SMET `-chooser

Figure 9: Semantics of SMET

If a timeout (ᾱ2) is discovered before the discrepancy
(ᾱ1), then the mismatch might be consequence of a timeout,
which is not necessarily the basis of a leak in s.

We end this section with two PSNI-insecure programs,
and explain attacks which SMET finds on them. Consider
in M h ; out L h

With d = 0, t = 100 and initial input 1, SMET(s) generates
an attack (L, I1, I2,M?d.L!0) on s in ᾱ1, where I1(M) =
M?d.(M??)∞, I2(M) = M?1.(M??)∞. Now consider
in M h ; while h != 0 { h := h - 1 } ; out L 0

With d = 0, t = 100 and initial input −1, SMET(s)
generates an attack (L, I1, I2,M?d.•.L!0) on s in ᾱ2, where
I1(M) = M?d.(M??)∞, I2(M) = M? − 1.(M??)∞. With
initial input 5, no attack is generated. With initial input 500,
however, an attack is generated which is not an attack on s
(it just took “too long” for the H-run to match L!0).

VII. RELATED WORK

Referring the reader for general overviews on language-
based information-flow security [SM03], on dynamic
information-flow control [Gue07], and on declassifica-
tion [SS09], we focus on related work on multi-execution.

Li and Zdancewic [LZ05] observe that “a noninterfering
program f(h, l) can usually be factored to a ‘high security’
part fH(h, l) and a ‘low security part’ fL(l) that does not use
any of the high-level inputs h. As a result, noninterference
can be proved by transforming the program into a special
form that does not depend on the high-level input.” They
propose relaxed noninterference that allows information
release through a set of prescribed syntactic expressions.

This focus is on enforcing relaxed noninterference statically,
by a security type system.

Russo et al. [RHNS07] sketch the idea of running multiple
runs of a program, where each run corresponds to the
computation of information at a security level. They discuss
that by running the public computation ahead of the secret
run, certain classes of timing attacks can be prevented.

Capizzi et al. [CLVS08] consider enforcement of secure
information flow in the setting of an operating system. The
enforcement is based on shadow executions as operating sys-
tem processes for different security levels. They report on an
implementation and an experimental study with benchmarks.

As discussed earlier, Devriese and Piessens [DP10] de-
velop a general treatment of secure multi-execution at the
application level and establish soundness and precision un-
der the assumption of total environments (there is always
new input), linear lattices and low priority scheduling.

Bielova et al. [BDMP11a] investigate multi-execution in
a reactive setting. Their model multi-executes Featherweight
Firefox [BP10], a formalization of a web browser as a
reactive system. The environments are not necessarily total,
but the security guarantee is weaker (than Devriese and
Piessens’ [DP10]): termination-insensitive noninterference.
The I/O model targets the browser setting, with handlers
under cooperative scheduling. The full version [BDMP11b]
contains an informal discussion of what the authors call
sub-input-event security policies, which corresponds to more
flexible policies on input events (flexible policies on output
events are not considered). These policies are defined by
projections that describe how much is visible at each level.
This mechanism is however not formalized. A formalization



would require reasoning about policy consistency: for exam-
ple, projections for less restrictive levels should not reveal
more than projections for more restrictive levels.

Kashyap et al. [KWH11] show that the low-priority
scheduling might exhibit timing leaks for non-linear security
lattices, and present several sound schedulers. We show
(Appendix A) that in the presence of handlers, it is not
necessary for the lattice to be non-linear to produce attacks
on the low-priority scheduler. Timing leaks can freely occur
in linear lattices, including the simple low-high lattice.

Jaskelioff and Russo [JR11] implement a monadic library
for secure multi-execution in Haskell. Austin and Flana-
gan [AF12] introduce faceted values to simulate secure
multi-execution by execution on enriched values. Faceted
values can be projected to the different security levels. The
projection theorem assures that a computation over faceted
values faithfully simulates non-faceted computations. They
show that faceted values guarantee termination-insensitive
noninterference. Faceted values provide a viable alternative
for an efficient implementation of our technique. Austin and
Flanagan also show how to relax noninterference by facet
declassification, based on robust declassification [ZM01],
[MSZ06]. Robust declassification operates on both confi-
dentiality and integrity labels, requiring both data to be
declassified and code that does the declassification to be
trusted. This leads to the introduction of integrity labels to
model trust and integrity checks that the declassification op-
eration is not influenced by untrusted data. This corresponds
to the who dimension of declassification [SS09]. Compared
to this approach, our declassification focuses on the what
dimension, specifying what source and sinks are affected
We are able to capitalize on what secure multi-execution is
best at: built-in security against implicit flows. No matter
where in the code declassification occurs, it will not leak
information about the context. There is no need to track the
integrity of the code in our model.

Barthe et al. [BCD+12] present a “whitebox” approach
to secure multi-execution. They devise a transformation that
guarantees noninterference via secure multi-execution for
programs in a language with communication and dynamic
code evaluation primitives

De Groef et al. [GDNP12] implement secure multi-
execution as an extension of the Firefox browser and report
on experiments with browsing the web. Compared to the
work by Bielova et al. [BDMP11a], they multi-execute the
actual scripts in web pages rather than the entire browser.
The main focus of the experiments is to confirm that the
enforcement does not modify the behavior of secure pages
in the presence of simple policies.

Compared to the work above, this paper enriches se-
cure multi-execution with the following features: (i) chan-
nels with distinct presence and content security levels, (ii)
the what dimension of declassification for secure multi-
execution, (iii) full transparency results that preserve the

order of messages, and (iv) show how secure multi-execution
can be used to detect attacks. To the best of our knowledge,
none of these features have been previously explored in the
context of secure multi-execution.

This paper stands on the ground laid by our previous
work [RHS12] on the foundations of security for interactive
programs. This earlier work presents a general framework
for environments as strategies, lifts the assumptions of the
total environment, and distinguishes between the security
level of message presence and content in the general setting.
While the previous work provides an excellent starting point
for the present paper, it does not treat secure multi-execution.

Unno et al. [UKY06] focus on the problem of find-
ing counterexamples against noninterference: pairs of input
states that agree on the public parts and lead to paths that
disagree on public outputs. Their technique combines type-
based analysis and model checking to explore execution
paths for programs that may cause insecure information
flow. They show that this method is more efficient than
model checking alone. In comparison, our attack-detection
technique does not require program analysis and allows
reasoning about the security of individual runs.

In an independent effort, Zanarini et al. [ZJR13] apply
secure multi-execution for program monitoring in a reactive
setting modeled by interaction trees. This work relates to
our attack detection results, although it focuses on a more
relaxed, progress-insensitive, security condition. Given a
program, the goal is to construct a scheduler for secure
multi-execution that mimics the execution of the original
program. Whenever a deviation is detected, the execution is
blocked to avoid leakage. This approach enforces progress-
insensitive noninterference.

VIII. CONCLUSION

Secure multi-execution emerges as a promising technique
for enforcing secure information flow. We have overviewed
the pros and cons of secure multi-executions and identi-
fied most pressing challenges with it. This paper pushes
the boundary of what can be achieved with secure multi-
execution. First, we lift the assumption from the original
secure multi-execution work on the totality of the input
environment (that there is always assumed to be input) and
on cooperative scheduling. Second, we generalize secure
multi-execution to distinguish between security levels of
presence and content of messages. Third, we introduce a
declassification model for secure multi-execution that allows
expressing what information can be released. Fourth, we
establish a full transparency result by barrier synchronization
of the runs at different security levels. Full transparency
guarantees that secure multi-execution preserves the original
order of messages in secure programs. We demonstrate that
full transparency is a key enabler for discovering attacks
with secure multi-execution.



Representing reactive systems in our setting is an interest-
ing topic of future work. In a reactive setting, an incoming
input event determines which handler may be triggered. We
can model this by tagging input values with a channel id.
The program can then pattern-match on the tag to dispatch
the value to the handler associated with the channel.

Although our formal results on declassification focus on
what information is released, the mechanism also supports
where information is released. Indeed, our declassification
mechanism restricts release to program points with declassi-
fication annotations. Therefore, we expect the mechanism to
enforce a variant of intransitive noninterference [Rus92]. An
investigation of formal guarantees for the where dimension
of declassification is a worthwhile topic for future work.

Future work also includes implementation and case stud-
ies. We plan to experiment with modifying the Fire-
fox browser to accommodate fine-grained, declassification-
aware, and transparent secure multi-execution. The modi-
fication will allow us to multi-execute JavaScript code in
an environment with preemptive scheduling of the runs at
different levels.
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Sjöberg, Stephanie Weirich, and Steve Zdancewic.
Reactive noninterference. In ACM Conference on
Computer and Communications Security, pages 79–
90, November 2009.

[CH08] D. Clark and S. Hunt. Noninterference for determin-
istic interactive programs. In Workshop on Formal
Aspects in Security and Trust (FAST’08), October
2008.

[CLVS08] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and
A. Prasad Sistla. Preventing information leaks
through shadow executions. In Annual Computer
Security Applications Conference (ACSAC), pages
322–331, 2008.

[Den76] D. E. Denning. A lattice model of secure information
flow. Comm. of the ACM, 19(5):236–243, May 1976.

[DP10] D. Devriese and F. Piessens. Non-interference
through secure multi-execution. In Proc. IEEE Symp.
on Security and Privacy, May 2010.

[GDNP12] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. Flowfox: a web browser with flexible and
precise information flow control. In ACM Conference
on Computer and Communications Security, October
2012.

[GM82] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proc. IEEE Symp. on Security
and Privacy, pages 11–20, April 1982.

[Gue07] G. Le Guernic. Confidentiality Enforcement Using
Dynamic Information Flow Analyses. PhD thesis,
Kansas State University, 2007.

[HS12] D. Hedin and A. Sabelfeld. Information-flow security
for a core of javascript. In Proc. IEEE Computer
Security Foundations Symposium, pages 3–18, 2012.

[JR11] M. Jaskelioff and A. Russo. Secure multi-execution
in haskell. In Proc. Andrei Ershov International
Conference on Perspectives of System Informatics,
volume 7162 of LNCS, pages 170–178. Springer-
Verlag, June 2011.

[KWH11] V. Kashyap, B. Wiedermann, and B. Hardekopf.
Timing- and termination-sensitive secure information
flow: Exploring a new approach. In Proc. IEEE Symp.
on Security and Privacy, 2011.



[LBJS06] G. Le Guernic, Anindya Banerjee, Thomas Jensen,
and David Schmidt. Automata-based confidentiality
monitoring. In Proc. Asian Computing Science Con-
ference (ASIAN’06), volume 4435 of LNCS. Springer-
Verlag, 2006.

[Le 07] G. Le Guernic. Automaton-based confidentiality
monitoring of concurrent programs. In Proc. IEEE
Computer Security Foundations Symposium, pages
218–232, July 2007.

[LZ05] P. Li and S. Zdancewic. Downgrading policies and
relaxed noninterference. In Proc. ACM Symp. on
Principles of Programming Languages, pages 158–
170, January 2005.

[MSZ06] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforc-
ing robust declassification and qualified robustness. J.
Computer Security, 14(2):157–196, May 2006.

[MZZ+01] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software
release. Located at http://www.cs.cornell.edu/jif, July
2001.

[NIK+12] Nick Nikiforakis, Luca Invernizzi, Alexandros
Kapravelos, Steven Van Acker, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni
Vigna. You are what you include: large-scale evalu-
ation of remote javascript inclusions. In ACM Con-
ference on Computer and Communications Security,
pages 736–747, October 2012.

[OCC06] K. O’Neill, M. Clarkson, and S. Chong. Information-
flow security for interactive programs. In Proc. IEEE
Computer Security Foundations Workshop, pages
190–201, July 2006.

[RHNS07] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld.
Closing internal timing channels by transformation.
In Asian Computing Science Conference (ASIAN’06),
LNCS. Springer-Verlag, 2007.

[RHS12] W. Rafnsson, , D. Hedin, and A. Sabelfeld. Secur-
ing interactive programs. In Proc. IEEE Computer
Security Foundations Symposium, June 2012.

[RS09] A. Russo and A. Sabelfeld. Securing timeout instruc-
tions in web applications. In Proc. IEEE Computer
Security Foundations Symposium, July 2009.

[RS10] A. Russo and A. Sabelfeld. Dynamic vs. static flow-
sensitive security analysis. In Proc. IEEE Computer
Security Foundations Symposium, July 2010.

[RS11] W. Rafnsson and A. Sabelfeld. Limiting information
leakage in event-based communication. In Proc. ACM
Workshop on Programming Languages and Analysis
for Security (PLAS), June 2011.

[RS13] W. Rafnsson and A. Sabelfeld. Secure multi-
execution: fine-grained, declassification-aware, and
transparent: Extended version. Located at http://
www.cse.chalmers.se/∼rafnsson/2013csf.pdf, 2013.

[Rus92] J. M. Rushby. Noninterference, transitivity, and
channel-control security policies. Technical Report
CSL-92-02, SRI International, 1992.

[SD12] N. Singer and C. Duhigg. Tracking Voters’
Clicks Online to Try to Sway Them.
http://www.nytimes.com/2012/10/28/us/politics/
tracking-clicks-online-to-try-to-sway-voters.html,
October 2012.

[Sim03] V. Simonet. The Flow Caml system. Software re-
lease. Located at http://cristal.inria.fr/∼simonet/soft/
flowcaml, July 2003.

[SM03] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. Selected Areas in
Communications, 21(1):5–19, January 2003.

[SR09] A. Sabelfeld and A. Russo. From dynamic to static
and back: Riding the roller coaster of information-
flow control research. In Proc. Andrei Ershov In-
ternational Conference on Perspectives of System
Informatics, LNCS. Springer-Verlag, June 2009.

[SS09] A. Sabelfeld and D. Sands. Declassification: Di-
mensions and principles. J. Computer Security,
17(5):517–548, January 2009.

[SST07] P. Shroff, S. Smith, and M. Thober. Dynamic depen-
dency monitoring to secure information flow. In Proc.
IEEE Computer Security Foundations Symposium,
pages 203–217, July 2007.

[UKY06] H. Unno, N. Kobayashi, and A. Yonezawa. Com-
bining type-based analysis and model checking for
finding counterexamples against non-interference. In
Proc. ACM Workshop on Programming Languages
and Analysis for Security (PLAS), pages 17–26, 2006.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound
type system for secure flow analysis. J. Computer
Security, 4(3):167–187, 1996.

[ZJR13] D. Zanarini, M. Jaskelioff, and A. Russo. Precise
enforcement of confidentiality for reactive system,
2013.

[ZM01] S. Zdancewic and A. C. Myers. Robust declassifica-
tion. In Proc. IEEE Computer Security Foundations
Workshop, pages 15–23, June 2001.

APPENDIX

A. FlowFox leak

The leak exploits the fact that FlowFox [GDNP12] multi-
executes JavaScript with the low-priority scheduler on a
per-event basis. Low priority implies that the low run is
executed first and without preemption by the high run. The
low-priority scheduler first applies to the main code. If the
main code sets event handlers, they are processed after the
multi-execution of the main code. Low handlers are multi-
executed. High handlers are only run once, at the high level.

Note that the problem with low-priority scheduling is
fundamental because it is not possible to extend the low-
priority discipline over multiple events—simply because it
is not possible to run the low handlers that have not yet been
triggered.

The security theorem in the abstract setting of secure
multi-execution [DP10] takes advantage of the low-priority
scheduler and establishes timing-sensitive security. This is
intuitive because the last access of the low data occurs before
any high data is accessed. This implies that whenever the
timing behavior is affected by secrets, there is no possibility
for the attacker to inspect the difference.

We show that the situation is different in the presence of
handlers. All we need to do is to set a low handler to execute
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after the high run for the main code has finished. Then the
low handler can inspect the computation time taken by the
high run. For a simple experiment, we consider the default
example policy from the FlowFox distribution1 in Listing 1.

Listing 1: FlowFox policy
1 /** Example policy file for FlowFox.
2
3 Detailed project information and contact

address can be found on:
4 https://www.distrinet.cs.kuleuven.be/software/

FlowFox/
5
6 HOWTO: modify the policy rules at the end this

file
7 **/
8
9 ... non-customizable part of the policy skipped...

10
11 /**********************************************/
12 /*********************** E D I T M E *******/
13 /**********************************************/
14
15 /* Example label conditional function */
16 var cross_origin = function ([url]) { return (url.

indexOf("same-origin") == -1); };
17
18 /* Examples */
19 SME.Label("nsIDOMHTMLDocument_GetCookie").as(SME.

Labels.HIGH).default("eat=this");
20 SME.Label("nsIDOMHTMLImageElement_SetSrc").if(

cross_origin).as(SME.Labels.LOW).else(SME.
Labels.HIGH);

21 SME.Label("nsIDOMHTMLScriptElement_SetSrc").as(SME
.Labels.LOW).if(cross_origin).else(SME.Labels.
HIGH);

The listing omits the non-customizable part of the policy,
focusing on the sources and sinks. This policy defines same-
origin domain as HIGH and cross-origin domains as LOW

(line 16). In order to protect cookies, secret source are
defined by labeling document.cookie as HIGH (line 19).
Lines 20 and 21 define the sinks that correspond to setting
the source attributes of image and script HTML elements.
These are labeled as HIGH for the same origin and LOW for
the other origins. The intention is to prevent attacks that leak
information about the cookie to third-party web sites (any
sites other than the site of the web page origin).

Nevertheless, the code in the web page in Listing 2 leaks
one bit of information about the cookie to the third-party
web site attacker.com.

Listing 2: One–bit timing leak
1 <html>
2 <script>
3 var c = new Date();
4 var m = c.getTime();
5 setTimeout(function() {leak();},1);
6 document.cookie="1";
7 //document.cookie="0";
8 var h=parseInt(document.cookie,10);
9 if (h > 0) {

1https://distrinet.cs.kuleuven.be/software/FlowFox/

10 var t = 0; while( t < 10000000) {t++;}
11 }
12
13 function leak() {
14 var d = new Date();
15 var n = d.getTime();
16 var x = n-m;
17 var s = new Image();
18 s.src = "http://attacker.com?v=" +

encodeURIComponent(x);
19 }
20 </script>
21 <head></head>
22 <body>One-bit timing leak</body>
23 </html>

Function getTime() of the Date object returns the number
of milliseconds since the midnight of January 1, 1970. First,
information about the cookie flows via document.cookie

into variable h (line 8). Depending on the value of h, the
program might take longer time to execute (line 10). As
foreshadowed below, all we need to do is to get a time stamp
at the beginning of execution (line 4) and after the high
run has finished. The difference in time reveals whether h

was zero. In order to bypass FlowFox’s multi-execution, we
simply create a low handler (line 5) to perform the final time
measurement (line 15). Running this page in FlowFox results
in a request for an image with URL http://attacker.com?v

=496 (repetitive runs show slight fluctuation around the value
of 496). Running the code with line 7 uncommented and line
6 commented out, results in a request for an image with
URL http://attacker.com?v=6 (repetitive runs fluctuate
insignificantly around the value of 6). Hence, we can reliably
leak one bit of secret information about the cookies. Clearly,
the leak can be easily magnified to leak the entire cookie by
walking through it bit-by-bit in a simple loop and sending
the results for each bit to the attacker.

Note that changing the policy for getTime() to return
HIGH result does not close the timing leak. The leak can be
still achieved exploiting the difference in the internal timing
behavior by a combination of low handlers [RS09].

While the leak outlined above is achieved by issuing a
timeout event, other events (such as user-generated events
and XMLHttpRequest) can be used to achieve the same effect.

The low-priority scheduler is both at the heart of the
soundness results by Devriese and Piessens [DP10] and at
the heart of FlowFox [GDNP12]. The experiment points to
a fundamental problem with low-priority scheduling. The
leak demonstrates that the low-priority scheduler breaks
timing-sensitive security and motivates the need for (fair)
interleaving of the runs at different levels, as pursued in this
paper.
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