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Abstract. Sound compositional reasoning principles are the foundation
for analyzing the security properties of complex systems. We present a
general theory for compositional reasoning about the information-flow se-
curity of interactive discrete-timed systems. We develop a simple core—
and with it, a language—of combinators, including ones that orchestrate
the execution of a collection of interactive systems. We establish condi-
tions under which timing-sensitive noninterference is preserved through
composition, for each combinator in our language. To demonstrate the
practicality of our theory, we model secure multi-execution (SME) us-
ing our combinators. Through this, we show that our theory makes it
straightforward 1) to prove, through compositional reasoning, that com-
plex systems are free of external timing channels, and 2) to identify
sub-components that cause information leakage of a composite system.

1 Introduction

End-to-end security is the Holy Grail of information-flow security [38]. It guar-
antees absence of information leaks between all endpoints of a system. Enforcing
end-to-end security is challenging for two main reasons. One is that modern
software is large and complex: software platforms execute third-party programs,
which have access to user-sensitive data and can interact with each other, the
user, and the operating system. The other is that even if a software is secure,
a leak may emerge when it is used as part of a larger system. This is because
any security guarantee makes assumptions on the system environment, which
the larger system can violate [26,28]. For instance, FlowFox [9] (by design) has
a timing leak [34] since it violates an assumption that its built-in enforcement
mechanism relies on to eliminate timing leaks. To address these challenges, the-
ories for secure composition have been studied extensively in event systems (e.g.
[26,42,44,24]), process calculi (e.g. [12,37,16,36,17,31]), transition systems (e.g.
[32,35]), and thread pools (e.g. [25,2]). These theories facilitate compositional
reasoning: sub-components can be analyzed in isolation, and security properties
of the entire system can be derived from security properties of its components.

This paper investigates compositional reasoning for eliminating timing leaks
in interactive systems. Timing channels are a key concern in computer secu-
rity; they can be used by an adversary to reliably obtain sensitive information
?? This work was done while the author was at Carnegie Mellon University.
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[6,22,11,30], and building systems free of timing channels is a nontrivial matter.
Many timing leaks are caused by the environment violating a system assumption,
e.g. when the cache affects the timing behavior of an application [30,11]. Despite
great interest in eliminating timing leaks [14,1,5,10,47,46], little has been done
towards secure composition that eliminates timing leaks [13].

To bridge this gap, we present a theory for secure composition of timed sys-
tems. We first define a general model of computation, with a notion of inter-
face that simplifies compositional reasoning. For this model of computation, we
formalize our security property, timing-sensitive noninterference. We develop a
core of combinators for composing systems, designed to be expressive yet easy to
reason about formally. With it, we implement more practical combinators, i.e. a
language for building composite systems, which support reasoning about process
scheduling, message routing, and state. We establish compositionality results for
the core of combinators, which then translates to compositionality results for the
whole language of combinators. Finally, as a case study, we implement secure
multi-execution (SME) [10] (an enforcement of timing-sensitive noninterference),
and its variant used by FlowFox [9] (which is timing-insensitive). This demon-
strates how our formalism makes it straightforward to prove noninterference of a
complex system, and to trace the insecurity of a system to faulty component(s).

Our contributions are as follows:
– We define a general system model for timed asynchronous interactive systems

(§ 3) and formalize timing-sensitive noninterference for these systems (§ 4).
– We develop a generic language of process combinators, with primitives for

routing messages, maintaining state, scheduling processes, and wiring pro-
cesses together arbitrarily (§ 6).

– Crucially, we identify and prove conditions under which our combinators
preserve timing-sensitive noninterference under composition (§ 5).

– We demonstrate the practicality of our formalism and language by conduct-
ing case studies on secure multi-execution (SME) (§ 7).

By implementing SME, we give a complete approach for building large systems
free of timing leaks: SME atomic parts, and build the rest using our language.
Detailed definitions and proofs can be found in our technical report [33]. The
main technical results are the theorems in § 5. The culmination of our work is
Figure 2, which describes the language, and lists the compositionality result for
all 28 combinators in it. We begin by motivating our approach in § 2.

2 Motivation

A system is a whole of interacting components, which can themselves be sys-
tems. We refer to the system boundary as its interface, and what lies beyond
as its environment. We reason about the behavior of a system in terms of how
it interacts with its environment through its interface. Compositional reasoning
is the use of compositionality results on parts to derive facts about the whole.
Secure composition is the study of compositionality results stating conditions un-
der which a secure system can be constructed from secure components. Secure
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composition is a crucial challenge for securing composite systems: even if all com-
ponents are secure, insecurities can arise under composition. However, obtaining
compositionality results is a nontrivial matter. Each definition of security makes
assumptions on how a system is used; if a composition operator—combinator—
violates such an assumption, then its use may introduce a leak.

To motivate our work, we give examples of timing leaks that arise under
composition, and outline challenges for secure composition of interactive systems.
Timing leaks. A timing channel is one through which an adversary learns sen-
sitive information by observing the time at which observed effects occur. A tim-
ing leak is an information leak through such a channel. For instance, consider

sleep H;
L := 1;

the program on the right. Here, “H” and “L” denote “high” (H,
secret) and “low” (L, public) confidentiality. Upper-case variables
are shared, and we refer to these as channels. Lower-case variables are local. We
use this convention throughout the paper. The output on the public channel L
is delayed as a function of the secret input channel H; by observing the timing
of this event, an adversary can infer information about H. Similar to sleep, a
loop on h (key-value lookup), or a branch on h where one branch takes longer
to execute, also leaks information.
Timing leaks from insecure composition. Timing leaks can arise as a re-
sult of composing secure systems. For instance, FlowFox [9] is a prototype of an
information-flow secure browser, based on secure multi-execution (SME) [10,34].
SME is a black-box enforcement that removes insecurities (including timing
leaks) in any given process. It does so by running two copies, H and L, of a
given process; feeding (a copy of) H and L input to the H-copy, and dropping its
L output; and feeding only L input to the L-copy, and dropping its H output. Since
the only source of L output (the L-copy) receives no H input, no information can
leak. FlowFox implements SME on a per-event basis; inputs are queued, and the
queue is serviced by first running the L-copy on the L projection of the next input,
then running the H-copy on the input. Each copy finishes handling an input be-
fore passing control over to the next copy, implementing cooperative scheduling.
However, while this approach prevents leaks to output values, the time at which
the L-copy processes the next input depends on how long it takes for the H-copy
to finish processing previous inputs. Thus, despite the process copies being run
securely, and the environment just being a queue, the way the two are put to-
gether and scheduled creates a timing leak. This is illustrated by the program on

H(x){ sleep x }
L(x){ L := 42 }

the right. This program will, upon receiving a message on
H with value n, sleep for n time units, and upon receiving a
message on L, output 42 to L. However, running an H and L copy of this program
on a queue starting with (Hn . L0) makes the time at which the L-copy produces
L42 depend on the time it takes for the H-copy to react to Hn—a function of n.
Secure composition & interaction: challenges. We have seen that a secure
system can easily cause an information leak by being used in unexpected ways by
its environment. While it is best that a secure system assumes as little as possible
of its environment, such a security guarantee would be very strict, and might not
be preserved under composition. The design of a theory for secure composition
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thus balances 1) environment assumptions, 2) security guarantee, and 3) choice
of combinators; each of these factors dramatically impact the others. We outline
some challenges that interaction introduces in this context.

One challenge involves the notion of environment that the security defi-
nition needs to consider. Clark and Hunt showed that for deterministic pro-
grams, an environment can wlg. be considered a fixed stream of inputs [7].
However, this does not apply to nondeterministic programs, as demonstrated by

H := H’⊕ X ||
x := 0|1;
X := x;
h := H;
L := (h ⊕ x)

the example on the right [7]. Here, || interleaves
components nondeterministically, and 0|1 is a
nondeterministic choice. The right component
outputs a secret bit H, encrypted (using XOR ⊕) with key x, to L. The out-
put is 0 or 1, independently of H. The left component has no L outputs. Thus,
both components (and the whole) are secure. Say || models hardware interleav-
ing that is, while a priori unknown, deterministic. Then the nondeterminism in
|| masks a covert channel that emerges when this nondeterminism is refined [46]
to that of the hardware. For instance, in interleaving right (line) 1, right 2, and
left 1, H = H’⊕ x at the time of the L output, so H’⊕ x⊕ x = H’ is written to L.

The main problem is that the right component does not keep its encryption
key x to itself. Its environment can thus, through accident or malice, adapt in-
put to the right component, causing the insecurity. To capture this, “animate”
environments need to be considered, e.g. strategies [42]. While expressive, strate-
gies are always ready to synchronize with a system on input and output opera-
tions. Strategies thus do not consider leaks caused by blocking communication,
which can occur under composition when components are wired together directly.

h := H;
for b in bits(h){
if b { H1 := 0 }
else { H0 := 0 }

}

�




while 1 {
x := H1;
L := 1

}
||

while 1 {
x := H0;
L := 0

}




Consider the program on the
right. With strategies as en-
vironments, all three com-
ponents are secure; the left
component interacts only on H channels, and, since a strategy always provides
input on request, the other two components output an infinite sequence of L 1s
and 0s respectively. However, when composed with �, which wires its compo-
nents in a synchronous pipe (i.e. any right-hand side global variable read blocks
until the left-hand side writes to said variable, and vice versa), the first L output
is 0 only if the bitwise representation of h contains 0.

Our assumptions. Considering systems that assume that their environment is
always ready to synchronize, but that do not guarantee the same, is an incongru-
ous basis for a theory of secure interaction. We therefore adopt an asynchronous
model of interaction in our theory. We assume systems can always receive any
input (making them input total [26,23]), and always take a step (which may
produce an output message). Our timing-sensitive noninterference assumes the
same of the environment. This strikes a good balance of Pt. 1-3 in the challenges
section above; since interaction is nonblocking, composing components will not
introduce adverse behavior. This enables rich forms of composition, and at the
same time yields a clean, not too strict, notion of noninterference.
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3 System model

We begin by presenting our system model, the constraints we impose on it for
reasoning about interaction, and our model of time.
Process domain. We consider a model of computation for processes that inter-
act with their environment (e.g. other processes) by receiving input or producing
output. We formalize this as a pair of relations, one specifying which inputs the
process can receive, the other which outputs it can produce. Let p range over
processes. For p = 〈RI,RO〉, p can produce output o and become p′ iff 〈o, p′〉 ∈ RO,
and p can receive input i and become p′ iff 〈i , p′〉 ∈ RI.

We write Proc I O to denote the semantic domain of processes that take
inputs of type I and produce outputs of type O. We define this set as the greatest
fixpoint of the following equation:

Proc I O = P(I × (Proc I O))×P(O × (Proc I O))

We take the greatest fixpoint because we wish to reason about the security of
processes that possibly run forever. This coalgebraic [18] approach is inspired by
the interaction trees of Zanarini et al. [45]. As demonstrated below, this approach
is just another way to define a labeled transition system. In contrast to more
standard transition system definitions, our approach is less cumbersome since
we do not need explicitly named states.
Example 1: Let p0 ∈ (Proc () Bool) be defined as the greatest fixpoint of the fol-
lowing equations.

p0 = 〈 {〈(), p1〉} , {〈False, p0〉} 〉 p1 = 〈 {〈(), p1〉} , {〈True, p0〉} 〉

False

()

()

True

p0 p1

1

This process outputs a Boolean indicating whether it has received a unit input
since its last actuation. The graph describes this behavior; straight arrows are
outputs, and wavy arrows are inputs. △
Example 2: Let M = C× N be the set of messages. C is the set of channels. Let c

range over C, cn abbreviate 〈c, n〉 (message on c carrying n), and m range over
M. Proc M (Maybe M) is the set of message-passing processes. These can receive a
message, or take a step whilst sending a message (Just m) or not (Nothing). △
Example 3: Let p, e, x , µ range over programs, expressions, variables X, memories
(C ∪ X)→ N respectively. We give the semantics of our example programs as
message-passing processes denotationally as the greatest fixpoint of J·Kµ0

, where
img(µ0) = {0} and JpKµ = 〈I µ p, O µ p〉. Here, I µ p = {〈cn, JpKµ[c 7→n]〉 | cn ∈M}, and
O is given in full in the TR [33]. A sample of its definition:
O µ (c := e; p) = {〈Just cµ(e), JpKµ[c 7→µ(e)]〉} O µ (skip; p)= {〈Nothing, JpKµ〉}
O µ (sleep e; p)= (µ(e) = 0) ? {〈Nothing, JpKµ〉} : {〈Nothing, Jsleep (µ(e)− 1); pKµ〉}
Inputs update memory without stepping the program, and each step produces
output Nothing except in the global variable assignment case. △
Process behavior. We reason about the behavior of a process strictly in terms
of its inputs and outputs. Process inputs and outputs thus constitute its interface
to its environment. Let p = 〈RI,RO〉. We write p o p′ iff 〈o, p′〉 ∈ RO, and p i p′

iff 〈i , p′〉 ∈ RI. We write p o iff ∃p′ � p o p′, and p i iff ∃p′ � p i p′.
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Example: Process p0 from Example 1 is the least process satisfying p0
() p1,

p0
False p0, p1

() p1, and p1
True p0. △

A process thus defines a labeled transition system with input-output effects
as labels. We define Eff I O, the set of I-input and O-output effects, as follows.

Eff I O = ({?} × I) ∪ ({!} ×O).

Let e range over effects. We write ?i , !o as shorthand for 〈?, i〉, 〈!, o〉 respectively.
The transition relation ( ) is then: p ?i p′ iff p i p′, and p !o p′ iff p o p′.

We consider the sequences of effects performed by a process. Let t range over
traces, i.e. finite words, and s range over streams, i.e. infinite words. Let ε denote
the empty word, and “ .” concatenation. Let S∗ and Sω be the set of finite and
infinite words over set S. For each p, let p ε p, let p e.t p′′ iff ∃p′ � p e p′ t p′′,
and let p t iff ∃p′ � p t p′. Likewise, p e.s iff ∃p′ � p e p′ s .
Example: For p0 from Example 1, we have p0

!False p0
?() p1

?() p1
!True p0. Let

t = !False . ?() . ?() . !True. Then p0
t , and p0

tω . △
Interactive processes. Since we are interested in the interaction of processes,
the model of interaction that we consider is of central importance. Ours has two
properties. The first property is that processes are productive: they can always
produce output. This is intuitive, since outputs represent work performed by
the process, and the processes that we consider can always perform work (this
is similar to e.g. weakly time alive in tSPA [13]). The second property is that
processes are input total [27] (a.k.a. input enabled [23]): processes can always
receive any input. This makes communication asynchronous, which simplifies
compositional reasoning [26,44] since processes cannot block their environment.
This assumption is typically achieved by queuing input or by buffering channels.
Definition 1 (interactive process): p is interactive iff
1. ∃o � ∃p′ � p o p′ ∧ p′ is interactive. (productive)
2. ∀i � ∃p′ � p i p′ ∧ p′ is interactive. (input total) ◊

An interactive process can always take action, and always accept any input.
Interaction between an interactive process and its environment thus never blocks
or stops; to reason about such behavior, it must be modeled, making its effect,
e.g. on timing, explicit. We define IProc I O, the set of interactive Proc I O, as

IProc I O = {p ∈ Proc I O | p is interactive}.
Example: For p0 from Example 1, p0 ∈ (IProc () Bool), i.e. p0 is interactive. If we
remove a transition from p0, the resulting process will not be interactive. For
instance, removing p1

() p1 yields a process that is not input total, as it cannot
receive more than one () between actuations. △
Timing.We use a discrete model of time and conflate transitions with time sim-
ilar to prior work (e.g. [13,5,10,20]). Our formalism times the work performed by
a process, which is producing output, since systems receive input asynchronously.
As a result, outputs are timed, and inputs are untimed. Each output takes one
unit of time, and inputs arrive at units of time by arriving between outputs.
Example: For p0 from Example 1, in p0

False p0
() p1

() p1
True p0, the process

performed two time units of work (one per output). Between the outputs, the
environment provided two inputs without the process itself performing work. △
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To motivate this timing model, consider an operating system process p, wait-
ing to be scheduled. While p is idle, another process can write to p’s memory,
thus delivering an input to p. p performed no work in receiving it; however, the
writing process (and thus the computer) performs work producing said input and
thus the passing of time in this exchange is accounted for in the actions of pro-
cesses. This model of time makes explicit, in the transition history of the whole
system, the time that passes while processes wait. This simplifies reasoning.

Our work makes no restriction on how fine the discretization of time is; it
can be chosen as needed when a process is being modeled (e.g. to a constant
factor of the motherboard clock frequency).

4 Security definition

Based on a notion of attacker observation, we formalize absence of attacks as a
semantic security property: timing-sensitive noninterference.
Threat model.We consider an attacker that observes public process inputs and
outputs, as well as how much time passes between their occurrence. We assume
that the attacker knows how the process is defined. Our goal is to facilitate
building processes that preserve confidentiality : an attacker that interacts with
such a process through its interface learns nothing about inputs to the process
that the attacker is not allowed to know.
Observables. We formalize what each principal is allowed to know by means
of a security lattice denoted 〈L,v〉, where L is a set, (v) ⊆ L ×L is a partial
order relation over L, and every pair of elements ` and `′ in L have a least upper
bound ` t `′ and greatest lower bound ` u `′. Any principal, including the attacker,
is assumed to be associated with an element of L, and (v) expresses the relative
privileges of principals. Information from a principal may only flow to more priv-
ileged principals (i.e. only upwards in the security lattice). We refer to elements
of L as security levels, expressing levels of confidentiality. In examples, we use a
two-point lattice 〈LLH,v〉, where LLH = {L,H} and (v) = {〈L, L〉, 〈L,H〉, 〈H,H〉}.

We express what each principal observes in inputs and outputs by defining,
for each principal, which values are observably equivalent. To identify values
that are unobservable to a principal, we introduce a distinguished value • that
we assume is not an element of any value space. Any value observably equivalent
to • is considered unobservable. Let V• = V ∪ {•}, and let v• range over V•. Let
Eq• V be the set of equivalence relations over V•.
Definition 2: R :L→Eq•V is an L-equivalence over V iff ∀`, `′ �` v `′ =⇒ R`′⊆R`.
We say v• is `-R-equivalent with v ′• iff 〈v•, v ′•〉 ∈ R`. ◊

We define the set ObsEq L V of L-equivalences over V as

ObsEq L V = {R : L→ Eq• V | R is an L-equivalence over V }.

We will consider different L-equivalences over the same set V at the same time;
when L is clear from the context, we let ( V=), ( V−=), and ( V

•=) range over ObsEq L V .
Example 4: For p0 from Example 1, say L observes the Boolean outputs, but does
not observe the inputs. We capture this as LHL-equivalences as follows.
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(
()

=H) = {〈(), ()〉, 〈•, •〉} (
()

=L) = (
()

=H) ∪ {〈(), •〉, 〈•, ()〉}
(Bool=H) = (Bool=L) = {〈True, True〉, 〈False, False〉, 〈•, •〉}

Since () ()

=L •, L cannot distinguish () from •, making presence of input to p0

unobservable to L. The H principal, however, can distinguish all values. △
Example 5: Revisiting Example 2, assume a mapping from channels to security
levels lev : C→ L. We express that an `-observer observes messages over (v `)
channels, using the following projection function obs : L→M→ Maybe M.

obs` cn = lev(c) v ` ? Just cn : Nothing
We define two messages to be `-equivalent iff what an `-observer observes in them
is the same. That is, for all `, ( M−=`) is the least equivalence relation satisfying

m M−=` m ′ iff (obs` m) = (obs` m ′) m M−=` • iff (obs` m) = Nothing

Since (obsL m) = Nothing for messages on H channels, m M−=L •, meaning L will not
observe the presence of such inputs. We let

.
V = V . = Maybe V , and let v̇ range

over
.
V . Let eqmaybe(L, V=) be the least equivalence relation (

.
V=) satisfying

(Justv)
.
V=` (Justv ′) iff v V=` v ′ (Justv)

.
V=` • iff v V=` • Nothing

.
V=` • iff ` 6∈L.

L is the set of principals that can distinguish Nothing from unobservable Just v .
We compare outputs with (

.M−=) = eqmaybe(∅, M−=). △
Noninterference. An interactive process is noninterfering iff unobservable in-
put does not interfere with observable output. An attacker observing public
effects of such a process thus cannot infer any knowledge of its secret inputs.
To motivate our formalization of noninterference, consider the set of streams a
process can perform. Each time the process performs an effect, this set shrinks
to the set of streams prefixed by the effects that the process has performed so
far. To violate noninterference, a process must receive secret input that renders
some public behavior impossible. Our formalization stipulates that a process
can, through its own actions, avoid states where it can be influenced by its envi-
ronment in this manner. We achieve this by requiring that, at any point of the
execution, secret input can be inserted, changed or removed, without affecting
the ability of the process to perform a given stream of observable effects.
Definition 3: R ⊆ (Eff I O)ω × (IProc I O) is an `-( I=)-( O=)-simulation iff
1. ∀〈?i . s , p〉 ∈ R � i I=` • =⇒ 〈s, p〉 ∈ R.
2. ∀〈 s, p〉 ∈ R � ∀i I=` • � ∃p′ � p i p′ ∧ 〈s, p′〉 ∈ R.
3. ∀〈?i . s , p〉 ∈ R � ∀i ′ I=` i � ∃p′ � p i′ p′ ∧ 〈s, p′〉 ∈ R.
4. ∀〈!o . s, p〉 ∈ R � ∃o′ O=` o � ∃p′ � p o′

p′ ∧ 〈s, p′〉 ∈ R.
p `-( I=)-( O=)-simulates s, written s 〈 I= O=]` p, iff 〈s,p〉 is in some `-( I=)-( O=)-simulation.◊
Definition 4 (noninterfering p): p is ( I=)-( O=)-noninterfering, written p ∈ ni( I=, O=), iff
∀` � ∀s � p s =⇒ s 〈 I= O=]` p. ◊
This coinductive definition requires that, for each `, and for each stream s

that p can perform, p must `-simulate s (Definition 3). For p to `-simulate s, p

needs to satisfy four conditions. Pt. 1 and 2 deal with unobservable input (and
are therefore vacuously true when I has no values unobservable to `). Pt. 1 states
that if s = ?i . s ′, the presence of i in s is not required for p to be able to simulate
s. Similarly, Pt. 2 states that the absence of i is not required either. Pt. 3 and 4
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deal with observable as well as unobservable effects. Pt. 3 states that if s = ?i . s ′,
p must simulate s ′ after any i ′ I=` i has been inserted into p, i.e. unobservably
changing the next input will not prevent the process from simulating the rest.
Finally, Pt. 4 states that if s = !o . s ′, p must be capable of producing some o′ O=` o

and subsequently simulate s ′.
This definition is timing-sensitive; p must be able to simulate s without in-

serting, observably changing, or deleting output, or any observable input. Thus, p

must be able to preserve the timing of public effects in s.
L := H = pE
if H {L := 1} {L := 0} = pI
if H {L := 1} = pP
sleep H; L := 1 = pT
skip = p1
sleep 100; L := 1 = p2

Example: The top four programs on the right vi-
olate ni. JpEKµ0 = p has an explicit flow. Assume
p ∈ ni( M−=,

.M−=), with ( M−=) and (
.M−=) as defined in Exam-

ple 5. Let s = !Just L0.(!Nothing)ω. Since p s , s 〈 M−=
.M−=]L p

must hold. So there must exist a L-( M−=)-(
.M−=)-simulation

R for which 〈s, p〉 ∈ R. By Definition 3 Pt. 2,
since ?H1 M−=L •, 〈s, p′〉 ∈ R where p ?H1 p′. However,
Just L1 6 .M−=L Just L0, is the only output p′ can perform, so R violates Pt. 4, con-
tradicting s 〈 M−=

.M−=]L p. Thus p 6∈ ni( M−=,
.M−=). JpIKµ0 has an implicit flow ; the proof that

it violates ni is nearly identical. JpPKµ0
has a progress leak. JpPKµ0

can perform
s = (!Nothing)ω; if ?H1 is inserted, JpPKµ0

eventually outputs Just P1 6 .M−=L Nothing.
JpTKµ0

has a timing leak. Let s = !Nothing.!Just P1.(!Nothing)ω. JpTKµ0
can perform

s. However, inserting ?H42 delays !Just P1.
The last two programs satisfy ni. Let p = Jp1Kµ0

, let s such that p s , and
let ( M−=) and (

.M−=) be as given in Example 5. We show that s 〈 M−=
.M−=]` p, for all `. Let

R = {〈ŝ, JskipKµ〉 | ŝ ∈ (Eff M {Nothing})ω}. Since p = Jp1Kµ0 , s ∈ (Eff M {Nothing})ω,
so 〈s, p〉 ∈ R. The proof that R is a `-( M−=)-(

.M−=)-simulation involves picking any
〈s, JskipKµ〉 ∈ R, and showing that Pt. 1-4 of Definition 3 hold (using that for
all µ, c and n, JskipKµ cn JskipKµ[c 7→n] and JskipKµ Nothing JskipKµ). Similarly, Jp2Kµ0

satisfies ni, since it ignores inputs. △
5 Combinator core

We develop a core of combinators for composing processes, presented in Fig-
ure 1. The core is expressive yet easy to reason about; instead of striving for a
minimal core, we designed this core such that each combinator in it embodies
a clearly-defined responsibility. We prove that the core combinators are all se-
curity preserving; composing secure components yields a secure whole. We use
this core to implement a language of security-preserving combinators, in § 6.
Core. Each core combinator in Figure 1 is a function that takes a set of processes
as parameter and returns a new process. The combinators are designed for build-
ing secure composites using secure parts. By introducing a primitive process, e.g.
JskipKµ0

, the core becomes a core language for implementing processes.
The map combinator transforms incoming and outgoing messages. With map,

we can tag messages, providing means of routing messages. The sta combinator
maintains state, updating and forwarding it upon receiving input and output.
With sta, we can implement queues and counters. The compositionality results
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p

map f g p 

f g

p

sta f g v p 

f gv

p

swi b p 

b

p

maybe p 

p

loop p 

p’

p

par p p’

(a) illustration

p (f i) p′

map f g p i map f g p′ Map?
maybe p Nothing maybe p

Maybe.?

p o p′

map f g p (g o) map f g p′ Map!
p i p′

maybe p Just i maybe p′ Maybe?

f i v = v ′ p 〈v′, i〉 p′

sta f g v p i sta f g v ′ p′ Sta?
p o p′

maybe p o maybe p′ Maybe!

p o p′ g o v = v ′

sta f g v p 〈v′, o〉 sta f g v ′ p′ Sta!
p1 i p′

1 p2 i p′
2

par p1 p2 i par p′
1 p′

2

Par?

p i p′

swi b p 〈b′, i〉 swi (b⊕ b′) p′ Swi?
p1

o1 p′
1 p2

o2 p′
2

par p1 p2 〈o1, o2〉 par p′
1 p′

2

Par!

swi False p Nothing swi False p
Swi.!

p i p′

loop p i loop p′ Loop?

p 〈b, o〉 p′

swi True p Just o swi True⊕ b p′ Swi!
p i p′ p′ i p′′

loop p i loop p′′ Loop!

(b) semantics
Fig. 1: Core combinators

for sta enable reasoning about the security of state maintained by a system.
The swi combinator maintains a Boolean state that determines whether the
given process is “on” or “off”. In (swi b p), b determines whether or not p is
running. If b = False, then p is “off”. Thus, when (swi b p) is tasked for output,
it merely produces Nothing without touching p (by rule (Swi.!)). With swi, we
can implement scheduling strategies and process termination, facilitating secure
implementation of runtime systems. Notice that in (swi False p), p receives input.
This lets the environment write values into p’s memory while p is waiting. The
maybe combinator ignores non-value inputs. That is, (maybe p) ignores Nothing

input, and inputs i to p on receiving Just i (rule (Map?)). With maybe, we can,
together with map, filter incoming messages, removing those not intended to
the process. The par combinator executes two processes in parallel. With par,
composite processes can be built. The loop combinator feeds process output back
in as input, which can orchestrate interactions between subcomponents.

Compositionality of core. Our main results are compositionality results for
each core combinator, stating how each preserves security. The proofs are by
coinduction. We sketch the proof for map; the other proofs are similar.

map. The map combinator preserves the security of its given process as long as
its given functions do not introduce insecurities. We identify two ways a func-
tion can introduce insecurities. The former is when a function maps observably
equivalent values to observably different values. Functions, that do not, are non-
interfering. The latter is when the input function maps an unobservable input
to an observable one. Functions, that do not, are unobservable-preserving.

Definition 5 (noninterference): forall f : I → O, ( I=), and ( O=), f is ( I=)-( O=)-non-
interfering, written f ∈ ni( I=, O=), iff ∀` � ∀i , i ′ � i I=` i ′ =⇒ (f i) O=` (f i ′). ◊
Definition 6 (unobservable-preserving): forall f : I → O, ( I=), and ( O=), f is ( I=)-( O=)-
unobservable-preserving, written f ∈ pu( I=, O=), iff ∀` � ∀i � i I=` • =⇒ (f i) O=` •. ◊
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Theorem 1 (map): forall p ∈ IProc I ′ O, f : I→ I ′, g : O→O′, ( I=), ( I′=), ( O=), and (O′=),
if p ∈ni( I′=, O=), f ∈ni( I=, I′=)∩pu( I=, I′=), and g ∈ni( O=, O′=), then (map f g p)∈ni( I=, O′=).

Proof sketch. Pick everything universally quantified in Theorem 1, satisfying the
stated assumptions. By Definition 4, the proof of (map f g p) ∈ ni( I=, O′=) is carried
out in two steps: given ` and s such that (map f g p) s , the first step is to find
a relation R ⊆ (Eff I O)ω × (IProc I O) that relates s and (map f g p); the second
step is to prove that R is a `-stream-simulation (Definition 3). Let

R={〈ŝ, map f g p̂〉 | ∃s ′ � s ′ 〈 I′= O=] p̂ ∧ (map f g s ′) s }.

Here, (map f g s′) ŝ relates an activity of the composite process to the activity
of the inner process; (map f g s′) ŝ iff for some process p̂, (map f g p̂) ŝ and p̂ s′

(thus s ′ is what p̂ did as (map f g p̂) computed ŝ). To see that 〈s, map f g p〉 ∈ R,
construct s ′ from the proof of (map f g p) s such that p s′ and (map f g s ′) s .
Then invoke p ∈ ni( I′=, O=) to establish s ′ 〈 I′= O=] p. The proof that R is a `-stream-
simulation involves picking any pair 〈ŝ, map f g p̂〉 ∈ R, and showing that points
1) through 4) of Definition 3 hold through case analysis. ∎
sta. The compositionality result for sta states how to introduce state into a large
system without violating security: sta preserves the security of a given process as
long as the state update functions do not introduce insecurities. These functions
can do so in two ways: using unobservable parts of input and state to observably
update state, and observably updating state upon receiving an unobservable in-
put. Functions that do not do this are noninterfering and equivalence-preserving.
Definition 7: forall f : I → V → O, ( I=), ( V=), and ( O=), f is ( I=)-( V=)-( O=)-noninterfer-
ing, f ∈ni( I=, V=, O=), iff ∀` � ∀i ,i ′ � i I=` i ′ =⇒ ∀v ,v ′ � v V=` v ′ =⇒ (f i v) O=` (f i ′v ′). ◊
Definition 8 (equivalence-preserving): forall f : I → V → V , ( I=), and ( V=), f is ( I=)-
( V=)-equivalence-preserving, f ∈ pe( I=, V=), iff ∀` � ∀i � i I=` • =⇒ ∀v � (f i v) V=` v . ◊
Theorem 2 (sta): forall p, f , g, v , ( I=), ( V=), and ( O=), if p ∈ni(V×I=, O=), g ∈ni( O=, V=, V=),
and f ∈ni( I=, V=, V=) ∩ pe( I=, V=), then (sta f g v p) ∈ ni( I=, V×O= ), where (V×O= ) = eqpair( V=, O=)

and (V×I=) = eqpair•R( V=, I=). ◻
〈a, b〉 A×B

=` 〈a′, b′〉 iff a B=` a
′ and b B=` b

′ (1)
〈a, b〉 A×B

=` • iff a A=` • and b B=` • (2)
〈a, b〉 A×B

=` • iff b B=` • (3)

Let eqpair( A=, B=), eqpair•LR( A=, B=)

and eqpair•R( A=, B=) denote the
least equivalence relation (

A×B

=)

satisfying (1), (1) and (2), and (1) and (3) respectively. Here, eqpair( A=, B=)
is componentwise observable equivalence, with observable presence, and
eqpair•LR( A=, B=), eqpair•LR( A=, B=) weaken eqpair( A=, B=) by making the presence
of pairs unobservable when both, or the right, components are, respectively.
swi. The compositionality result for swi states how to switch processes (to e.g.
implement schedulers) securely: swi preserves security as long as unobservables
cannot affect the switch state, and, as a result, stagger observable process output.
We consider two ways to meet this restriction. One way this restriction is met for
a principal ` is for ` to fully observe the switch state; that way, no information
can ever leak to ` through it. Such observers are aware of the value of the switch.
Definition 9 (awareness): forall ` and ( V=), ` is aware of v under ( V=), ` ∈ A(v , V=), iff
∀v̇ � v V=` v̇ =⇒ v = v̇ . ◊
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For instance, A(True, Bool=) is the set of principals who can distinguish True from
every other value in Bool (i.e. False). In the case of swi, those observers observe
the switch signals, and thus the switch state. Since the switch state can be
inferred by knowing whether the switched process took a step, only A(True, Bool=) are
allowed to distinguish Nothing output from Just o for unobservable o. Relation
(
.
O=) = eqmaybe(A(True, Bool=), O=) achieves this. Another way this restriction is met for

a principal ` is if all process output is `-unobservable. Then, ` is oblivious to p.
Definition 10 (oblivious): forall `, p ∈ IProc I O, and ( O=), ` is ( O=)-oblivious to p,
`∈O(p, O=), iff (∀i ,p′ �p i p′=⇒ `∈O(p′, O=)) ∧ (∀o,p′ �p o p′=⇒ `∈O(p′, O=)∧o O=` •).◊

An ` observer that is not aware of the value of the switch will then, by (
.
O=),

not be able to infer any information about the switch state, since all output from
the switched process look the same.
Theorem 3 (swi): forall p, ( I=), ( O=), and (Bool=), if p ∈ ni( I=, Bool×O= ) and ∀` � ` ∈ L, then
swi b p ∈ ni( I=,

.
O=), where L = A(True, Bool=) ∪ O(p, Bool×O= ), (

.
O=) = eqmaybe(A(True, Bool=), O=),

(Bool×I= ) = eqpair•LR(Bool=, I=), and (Bool×O= ) = eqpair•R(Bool=, O=). ◻
maybe, loop, par. The compositionality results for maybe, loop and par are sim-
ple in comparison to the above. For instance, maybe preserves the security of a
process, even for principals who do not observe Nothing, since nothing is ever
delivered to the process when such input is received. Using loop to create feed-
back around a secure process does not introduce insecurities, since the process
must always meet its public deadlines regardless of what the source of its input
is. Looping thus cannot cause an interactive process to block itself. Our theory
therefore eliminates known challenges for security under feedback [26,43,35]. Fi-
nally, composing secure processes with par yields a secure process, since all it
does is run the processes in parallel.
Theorem 4 (maybe): forall p, ( I=), ( O=), if p ∈ ni( I=, O=), then maybe p ∈ ni(

.
I=, O=),

where (
.
I=) = eqmaybe(∅, I=). ◻

Theorem 5 (loop): forall p and ( I=), if p ∈ ni( I=, I=), then loop p ∈ ni( I=, I=). ◻
Theorem 6 (par): forall p1, p2, ( I=), (O1=), and (

O2=), if p1 ∈ni( I=,
O1=) and p2 ∈ni( I=,

O2=),
then par p1 p2 ∈ ni( I=,

O1×O2= ), where (
O1×O2= ) = eqpair(

O1=,
O2=). ◻

6 Combinator language

With this core, we build a rich language (Figure 2a) of combinators that mediate
the interaction of processes. The language, in addition to facilitating the wiring
of process outputs and inputs, includes combinators for transforming and filter-
ing messages, maintaining state, and for switching processes on or off. Complex
systems, including schedulers, runtime monitors, and even runtime systems can
be implemented in this language. By virtue of compositionality results for our
core, the combinators in our language are security preserving. The crucial point
is that the compositionality results can be invoked to prove noninterference of
processes implemented in our language, obtaining noninterference by construc-
tion. To demonstrate, we use this language to implement an enforcement of
timing-sensitive noninterference in § 7.
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Language. The language is summarized in Figure 2a. The figure displays the
type of each combinator in the language, along with a brief description of its
semantics. For brevity, we leave out descriptions of combinators that are trivial
specializations of a more general combinator (e.g. ones with suffix I or O: spe-
cializations that operate only on input and output). The implementation of each
combinator in terms of core combinators is given in the TR [33].
Message transformation & process state. mapI, mapO, staI, and staO are trivial
specializations of the core map and sta combinators. For instance, mapI is defined
as mapI f p = map f id p. Thus, mapI only transforms inputs. We make heavy use
of mapI and mapO for routing and restructuring messages in § 7.
Message filtering. filter drops messages that do not satisfy a predicate. We
implement filter using map, by transforming predicates into functions that map
messages that do not satisfy the predicate to Nothing. We then use maybe to
discard resulting Nothing input. We cannot do the same for output; the process
still performed work. The source combinator drops all input.
Message tagging. The tagging combinators tag and untag messages. These are
simple specializations of map; for instance, tagI v p i iff p 〈v , i〉 . The only non-
trivial tagging combinator, tokenI v p, treats a tag as a token, only passing an
input to p if the input is tagged with v (consuming the token). A sample use of
the tag combinators is implementing point-to-point communication; this can be
done by having senders tag a message with the ID of a recipient process, and
having said process use tokenI to only process messages addressed to it.
Process switching. Two specializations of swi are noteworthy. swiI combinator,
by only switching its subprocess on or off upon receiving input, implements
a preemptive switching strategy. Likewise, swiC, by using input to switch its
subprocess on, and output to switch it off, implements a cooperative switching
strategy. We use swiI and swiC in to implement scheduling strategies in § 7.
Process composition.With par and loop, we can compose any number of processes
that all receive copies of each other’s output. This “universal” composition can
be specialized to more restricted forms of communication, including “sequential”
composition, using our other combinators to selectively route messages.
Compositionality of language. The compositionality results for our language
are listed in Figure 2b. Each black-bordered box contains a compositionality re-
sult; the first line is its guarantee, while subsequent lines in the box are assump-
tions under which that guarantee holds. Occurrences of unbound variables in a
box are implicitly universally quantified. For instance, the first six lines under
“process state” is one compositionality result, namely Theorem 2 restated.

The meaning of each assumption has already been explained in § 5, save for
three. First, O( V=) = {` | ∀v � v V=` •}. That part of the assumption of tokenI states
that ` must either be aware of the token (thus observing presence of all input),
or oblivious to all input (thus public output is independent of all input). Second,
(Bool−=)` = {〈True, True〉, 〈False, False〉, 〈•, •〉},∀`. Third, f |I is the restriction of f to I.
We use these two definitions to state that for observable observably equivalent
values, the filter functions make the same filtering decision.

Compositionality follow from Theorems 1, 2, 3, 4, 5, and 6.
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Corollary 1 (composition): Each statement in Figure 2b is true. ◻
7 Case study: SME

To demonstrate the practicality of our results, we implement secure multi-
execution (SME) [10], the enforcement that we discussed in § 2.

We develop two variations of SME, which differ in how the execution of pro-
cess copies is managed. The former variant uses a preemptive scheduling strategy
to schedule the process copies. For this variant, we show how a proof of sound-
ness can be straightforwardly obtained by invoking our compositionality results.
The latter variant uses a cooperative scheduling strategy. Here we demonstrate
a timing leak, and, using our compositionality results, trace the insecurity in the
implementation to a single component. Together, this demonstrates that our the-
ory can be used to straightforwardly establish timing-sensitive noninterference
of a complex system, and to identify subcomponents that cause insecurities.

We stress that our construction easily generalizes to lattices of any shape
and size, like SME does [34], even though for clarity of presentation, we assume
the two-point lattice LHL. We will use the definition of message-passing processes
and their observables, i.e. M, obs, ( M−=) and (

.M−=), from Examples 2 and 5.
Secure execution. At first, it appears our compositionality results will not aid
us in establishing soundness for an implementation of SME in our language; our
results assume that processes being composed are secure, while SME makes no
such assumption. We observe that only a tiny part of SME is responsible for en-
forcing security. We deconstruct SME, separating plumbing and scheduling from
this part, prove that the part enforces ni, and then leverage our compositionality
results to show that plumbing and scheduling does not introduce insecurities.

This tiny part is SE: a combinator for executing any given p ∈ IProc M
.
M

securely. SE secures the `-copies. With (SE ` p) denoting the securely executed `-
copy of p, SE achieves this effect by 1) feeding only the `-observable part of input
to the `-copy, and 2) dropping all non-` parts of output from p. Intuitively, (SE ` p)

is a secure process since (SE ` p) outputs messages only on channels labeled `,
and computes these using only input on channels labeled (v `). Both 1) and 2)
are needed; without 1), input from (6v `) can flow to output channels labeled `,
and without 2), (SE ` p) can leak between incomparable channels in (v `).

SE : L -> IProc M
.
M -> IProc M

.
M

SE ` p = map obs` prj` (maybe p)

Listing 1.1: Secure Execution

To achieve 1), we use (mapI obs` p).
obs` preprocesses input to p in the man-
ner required by 1). To achieve 2), we use
(mapO prj` p), where prj : L→

.
M→

.
M is a function that projects output on non-`

channels to Nothing.
prj` Nothing = Nothing prj` cn = (lev(c) = `) ? Just cn : Nothing

With this, we define SE as in Listing 1.1.
Theorem 7: ∀`, p � (SE ` p) ∈ ni( M−=, M.−=).
Proof sketch. Pick ` and p. We need to prove (SE ` p) ∈ ni( M−=, M.−=). Pick `′, and s

such that (SE ` p) s . Case on ` v `′. We use the following simulations in the cases.
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Message transformation
map : (I -> I’) -> (O -> O’) -> Proc I’ O -> Proc I O’
mapI : (I -> I’) -> Proc I’ O -> Proc I O
mapO : (O -> O’) -> Proc I O -> Proc I O’

map f g p transforms messages using f for inputs and g for
outputs.

Message filtering
filter : (I -> Bool) -> (O -> Bool) -> Proc I O -> Proc I O.
filterI : (I -> Bool) -> Proc I O -> Proc I O
filterO : (O -> Bool) -> Proc I O -> Proc I O.

filter f g p maps messages that do not satisfy a predicate (f
for input, g for output) to Nothing.

maybe : Proc I. O -> Proc I O
maybe p drops Nothing inputs, and upon receiving Just i,
passes i to p.

source : Proc I O -> Proc I’ O
source p drops all input to p (effectively turning p into an
information source).

Message tagging
tag : V -> Proc (V * I) O -> Proc I (V * O)
tagI : V -> Proc (V * I) O -> Proc I O
tagO : V -> Proc I O -> Proc I (V * O)

tag v p pairs messages with a tag v .

untag : Proc I (V * O) -> Proc (V * I) O
untagI : Proc I O -> Proc (V * I) O
untagO : Proc I (V * O) -> Proc I O

untag p removes the tag from messages.

retagI : V -> V -> Proc (V * I) O -> Proc (V * I) O
retagI v v ′ p replaces the tag in v -tagged input, with v ′.

tokenI : V -> Proc I O -> Proc (V * I) O
tokenI v p passes input tagged with v to p untagged, mapping
all other input to Nothing.

Process state
sta : (I -> V -> V) -> (O -> V -> V) -> V -> Proc (V*I) O

-> Proc I (V*O)
staI : (I -> V -> V) -> V -> Proc (V * I) O -> Proc I (V*O)
staO : (O -> V -> V) -> V -> Proc (V * I) O -> Proc I (V*O)

sta f g v p uses f and g to compute a new state on input and
output, forwarding the new state.

Process switching
swi : Bool -> Proc I (Bool * O) -> Proc (Bool * I) O.
swiI : Bool -> Proc I O -> Proc (Bool * I) O.
swiO : Bool -> Proc I (Bool * O) -> Proc I O.

swi b p switches p off when b = False, and flips b when a
message is tagged with True.

swiC : Bool -> Proc I (Bool * O) -> Proc (Bool * I) O.
swiC b p behaves like swi b p, except only output switches p off.

Process composition
loop : Proc I I -> Proc I I

loop p feeds output from p back into p.

par : Proc I O1 -> Proc I O2 -> Proc I (O1 * O2)
par p1 p2 arranges p1 and p2 in parallel, pairing their outputs.

uni : Proc I I -> Proc I I -> Proc I (I * I)
uni p1 p2 is like par, but also routes output from each pj into
the other.

seq : Proc I V -> Proc V O -> Proc I O
seq p1 p2 arranges p1 and p2 in a pipe.

in : Proc I O -> Proc O I -> Proc I O
in p1 p2 places p2 “inside” p1, creating an internalized feedback.
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=)∩pe( O

=,
V
=)

p ∈ ni( I
=,

O
=).

Process switching
swi b p ∈ ni(Bool*I

= ,
O.
=)

(
Bool*I
= )= eqpair•LR(Bool

=,
I

=)
(
Bool*O
= )= eqpair•R(Bool

=,
O

=)
(

O.
=) = eqmaybe(L, O

=)
L = A(True, Bool

=)
∀̀ � `∈ L ∪ O(p,

Bool∗O
= )

p ∈ ni( I
=,

Bool*O
= )

swiI b p ∈ ni(Bool*I
= ,

O.
=)

(
Bool*I
= )= eqpair•LR(Bool

=,
I

=)
(

O.
=) = eqmaybe(L, O

=)
L = A(True, Bool

=)
∀̀ � `∈ L ∪ O(p,

O

=)
p ∈ ni( I

=,
O
=)

swiO b p ∈ ni( I
=,

O.
=)

(
Bool*O
= )= eqpair•R(Bool

=,
O

=)
(

O.
=) = eqmaybe(L, O

=)
L = A(True, Bool

=)
∀̀ � `∈ L ∪ O(p,

Bool∗O
= )

p ∈ ni( I
=,

Bool*O
= )

swiC b p ∈ ni(Bool*I
= ,

O.
=)

(
Bool*I
= )= eqpair•LR(Bool

=,
I

=)
(
Bool*O
= )= eqpair•R(Bool

=,
O

=)
(

O.
=) = eqmaybe(L, O

=)
L = A(True, Bool

=)
∀̀ � `∈ L ∪ O(p,

Bool∗O
= )

p ∈ ni( I
=,

Bool*O
= )

Process composition
loop p ∈ ni( I

=,
I
=)

p ∈ ni( I
=,

I
=)

par p1 p2 ∈ ni( I
=,

O1*O2
= )

(
O1*O2
= )= eqpair(

O1

=,
O2

=)
p1 ∈ ni( I

=,
O1
=)

p2 ∈ ni( I
=,

O2
=)

uni p1 p2 ∈ ni( I
=,

I*I
=)

(
I*I
=)= eqpair( I

=,
I

=)
p1 ∈ ni( I

=,
I
=)

p2 ∈ ni( I
=,

I
=)

seq p1 p2 ∈ ni( I
=,

O
=)

p1 ∈ ni( I
=,

V
=)

p2 ∈ ni( V
=,

O
=)

in p1 p2 ∈ ni( I
=,

O
=)

p1 ∈ ni( I
=,

O
=)

p2 ∈ ni( O
=,

I
=)

See § 3, § 4, § 5 and § 6 for notation.

(b) Compositionality results

Fig. 2: Language
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R1 = {〈ŝ, SE ` p̂〉 | SE ` p̂ ŝ } R0 = {〈ŝ, SE ` p̂〉 | ŝ ∈ (Eff M {cn | lev(c) = `}.)ω}
In the “true” case, SE replaces `′-unobservable input with Nothing (by definition
of obs`), which in turn gets dropped by maybe. Since `′-observable inputs are only
`′-( M−=)-observably equivalent with themselves, this together gives that changes
in `′-unobservable input to (SE ` p) never propagate into p. Thus, we can show
that R1, which relates streams to processes very tightly, is a `′-( M−=)-(M.−=)-stream-
simulation. It is also easy to see that 〈s, SE ` p〉 ∈ R1. In the “false” case, we use a
different observation: SE maps all output from p to Nothing if it is not a message
on a `-labeled channel (by definition of prj`). Since messages on `-labeled channels
are `′-(M•−=)-equivalent to Nothing, none of the outputs from SE ` p are `′-observable.
This lets us use R0. To establish 〈s, SE ` p〉 ∈ R, we use the following lemma. ∎
Lemma 1: ∀p, ` � (SE ` p) ∈ IProc M {cn | lev(c) = `}.. ◻
Scheduler processes. Our two variations of SME execute `-copies concurrently,
with executions coordinated by a scheduler process. A scheduler chooses which
process copy goes next by outputting its security level. Like previous work on
SME [10,20,34], our schedulers receive no input. This simplifies reasoning (this
way, schedulers cannot leak information [20]). Our schedulers are rich enough to
express practical scheduling strategies, including Round-Robin scheduling.

The set of schedulers is IProc ∅ L.. Since schedulers receive no input, we make
scheduler choices public. We define `′ L−=` `

′′ iff `′ = `′′. Let (L.−=) = eqmaybe(L, L−=), and
let ( ∅−=`) = {〈•, •〉}, ∀`. Since schedulers receive no input, the following is clear.
Corollary 2: ∀p ∈ IProc ∅ (Maybe L) � p ∈ ni( ∅−=, L.−=). ◻
Secure multi-execution, preemptive. Our first variation of SME schedules
`-copies preemptively. Example SME schedulers of this sort are Multiplex-2 [20],
and the deterministic fair schedulers [34]. In this variation, the `-copies run in
parallel with a scheduler. In each time unit, the scheduler can switch one of the
process copies on or off (preempting it).

1 SMEP : IProc ∅ .L -> IProc M
.
M -> IProc M

.
M

2 SMEP pS p =
3 mapI Right (in (mapO merge runs) (source pS) )
4 where
5 runs = par (SwCP H (SE H p)) (SwCP L (SE L p))

Listing 1.2: SME, Preemptive

The SMEP combinator in
Listing 1.2 achieves this ef-
fect. Here, SMEP pS p securely
executes a H- and a L-copy of
a process p in parallel (line
5). These `-copies are made switchable by SwCP (defined later). The scheduler pS
interacts with these switches by means of the in construct. Whereas in ensures
pS interacts only with the `-copies, source makes this interaction unidirectional.

SwCP : L -> IProc M
.
M -> IProc (Either

.
L M)

.
M

SwCP ` p =
mapI tobm` (swiI False (maybe p))

where
tobm : L -> Either

.
L M -> Bool *

.
M

tobm ` (Right m) = 〈False ,Just m〉
tobm ` (Left Nothing) = 〈False ,Nothing〉
tobm ` (Left (Just `′)) = 〈`==`′,Nothing〉

Listing 1.3: Switch Copy, Preemptive

Before explaining the maps
on line 3, let’s delve into
SwCP, in Listing 1.3. Be-
sides making p preemp-
tively switchable (by swiI),
(SwCP ` p) defines the inter-
face between an `-copy and
the scheduler. As the type of SwCP indicates, (SwCP ` p) receives switch commands
from the scheduler, and messages from the environment. Function tobm specifies
how (SwCP ` p) reacts to input. The function outputs a pair 〈b, ṁ〉; b determines
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whether the switch should be flipped, and ṁ is the input message (if any) to p.
Here, b = True iff the input is ` from the scheduler, and ṁ = Just m iff the input
is m from the environment.

Note that tobm only changes how data is packaged w/o changing the data
itself (except `==`′, which is public). Thus, tobm is noninterfering. This, together
with our compositionality results, gives us that SwCP is security-preserving.
Corollary 3: ∀p, ` � p ∈ ni( M−=, M.−=) =⇒ (SwCP ` p) ∈ ni( I=, M.−=),
where I = Either L. M and ( I=) = eqeither(L.−=, M−=). ◻

In Listing 1.2 line 3, Right maps environment input into Either L. M (the
space of values switched `-copies receive). Finally, merge projects each pair of
output messages (if any) from the `-copies to a single message. It does so by
preferring the right component, choosing the left component only if the right
component is Nothing. We define merge : O. ×O. → O. as follows.

merge 〈ȯ, Nothing〉 = ȯ merge 〈 , Just o〉 = Just o

Lemma 2: ∀`H, `L � `H 6v `L =⇒ (merge|I) ∈ ni(M.2−=, M.−=),
where (M•2−=) = eqpair(M.−=, M.−=) and I = {cn | lev(c) = `H}. × {cn | lev(c) = `L}.. ◻
By Lemma 1, the output space of (SwCP ` (SE ` p)) is {cn | lev(c) = `}..
Corollary 4: ∀p, ` � (SwCP ` (SE ` p)) ∈ IProc I O,
where O = {cn | lev(c) = `}. and I = Either L. M. ◻

Now, {cn | lev(c) = H}. × {cn | lev(c) = L}. is the output space of runs. This lets
us invoke Lemma 2 on the mapO merge part of SMEP. By invoking the composition-
ality results for source, in and mapI, we get a proof of soundness of SMEP.
Corollary 5: ∀pS, p � (SMEP ` p)∈ni( M−=, M.−=). ◻

This venture highlights the power of our approach: it enables SME to simply
be implemented, reducing soundness to proving properties of simple components.
Secure multi-execution, cooperative. Our second variation of SME sched-
ules `-copies cooperatively. An example scheduler of this sort is selectlowprio [10],
implemented in FlowFox [9] on a per-event basis. Here, processes are arranged
like in SMEP. The key difference is that at only one process (including the sched-
uler) can be active at a time. An active process remains active until it releases
control. When an `-copy does, the scheduler receives control, remaining active
until it determines which process copy to activate, and activates it.

However, as we will confirm, this approach has a timing leak: allowing the H-
copy to control when it releases control to the scheduler means that the time at
which the L-copy is subsequently activated can depend on H information [20,34].

SMEC : IProc ∅ .L -> IProc M (Bool*
.
M) -> IProc M

.
M

SMEC pS p =
map Right snd (in (mapO merge runs) (SwSC pS))

where
runs = par (SwCC H (SEC H p)) (SwCC L (SEC L p))

Listing 1.4: SME, Cooperative
SwCC : L -> IProc M (Bool*

.
M)

-> IProc (Either
.
L M) (Bool*

.
M)

SwCC ` p =
map tobm` tobm’ (swiC False (mapO tobbm (maybe p)))

where // tobbm and tobm’ omitted; see the TR.

Listing 1.5: Switch Copy, Cooperative

The SMEC combinator,
in Listing 1.4, implements
this approach. The struc-
ture is exactly like SMEP.
However, a few combina-
tors have been modified.
First, the type of SMEC

is different; processes to
be multi-executed are now
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IProc M (Bool ×M).. The Boolean output signifies control release. Second, SE

needs to be modified slightly as a result. The new combinator, SEC, enforces
ni; see the TR [33] for details. Third, the process switch needs to be updated to
match this new scheduling semantics. The new switch, SwCC, is given in Listing
1.5. Compared to SwCP, SwCC replaces swiI with swiC, and propagates a release
signal from the process to both swiC and the scheduler. The following should
thus be of no surprise.
Corollary 6: ∀p, ` � p ∈ ni( M−=, O=) =⇒ (SwCC ` p) ∈ ni( I=, O=), where I = Either L. M,
O = Bool ×M., ( I=) = eqeither(L.−=, M−=), and ( O=) = eqpair(eqat(Bool , `), M.−=). ◻

Here, eqat defines that values are observable only to principals at or above a
given level; for all `, eqat(A, `) is the least equivalence relation ( A−=`) satisfying

a A−=`′ a
′ iff ` 6v `′ ∨ a = a′ a A−=`′ • iff ` 6v `′.

SwSC : IProc ∅ .L -> IProc (Bool*
.
M) (Either

.
L M)

SwSC b p =
map tobu toelm (swiC True (mapO tobelm (source p)))

where // tobu, toelm and tobelm in the TR.

Listing 1.6: Switch Scheduler, Cooperative

Things start to go wrong
in the scheduler switch, SwSC,
sketched in Listing 1.6. This
switch follows the structure
of SwSP. When switched on (by a `-copy), SwSC remains active until it produces a
security level ` (which, in turn, by SMEC, switches the `-copy on).

Now a problem emerges in swiC. Since the Boolean used to switch the sched-
uler comes from the H- and the L-copy, L needs to be oblivious to the scheduler
process. However, the scheduler process outputs security levels to the L-copy,
which are L. If we instead make security levels H, Corollary 6 becomes false; the
switch signal sent to the L-copy becomes H, forcing the switch on the L-copy to
be H, and since L is not oblivious to the L-copy, a leak can occur. There thus
appears to be an irreparable conflict in this variation of SME; L output must be
independent of H input, but the time at which the L-copy regains control depends
on output from the H-copy, which depends on H input.

8 Related Work

We discuss work in areas most related to ours: information-flow control of timing
channels, timed interaction, and theories of information-flow secure composition.
Timing channels. Timing channels can be categorized as internal and exter-
nal [39]. Several program analyses and transformations have been proposed to
stop leaks through external channels. Proposed white-box approaches include the
following. Hedin and Sands developed a type system that rejects programs for
which the time it takes to reach the point of the L effect can depend on H [14].
Zhang et al. annotate statements in an imperative language with a read and
write label expressing how information can flow through the runtime [47]. Agat
gave a program transformation that, in a program that passes Denning-style
enforcement [41] (which rules out explicit and implicit flows), pads H ifs and
bans H whiles [1]. Askarov et al. present a black-box timing leak mitigator [5].
Here, outputs are queued, and released FIFO according to a pre-programmed
schedule. If no output is in the FIFO when a release is scheduled, the schedule is
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updated (i.e. slowed). This places a logarithmic bound on timing leaks. Devriese
and Piessens formalize secure multi-execution (SME) that executes a program
multiple times, once for each security level, while carefully dispatching inputs
and ensuring that an execution at a given level is responsible for producing
outputs for sinks at that level [10].

Whereas the above approaches performs little or no exploration of composi-
tionality, we demonstrate that our timing-sensitive noninterference is preserved
under composition. Our combinators can be used to prove timing-sensitive non-
interference in large systems, by construction. By implementing SME, we have
shown that it is compatible with our theory. The mitigations are not compatible
with our theory as-is, since these allow leaks through timing, whereas our the-
ory allows no leaks. Modifying our theory to accommodate these is a promising
line of future work. The compatibility of the other approaches to our theory is
unclear as they make environment assumptions that may be incompatible with
ours. Compared to [14], our discrete-timed model is simplistic. We note, however,
that no part of our theory places restrictions on how fine the discretization of
time can be. Our work focuses on eliminating external timing channels, because
they have been demonstrated to be exploitable [6,22,11,30], and because internal
timing channels are caused by external timing channels of subcomponents.

Timed interaction. Timed models of interaction have been studied extensively
in a process algebraic setting [15,29,40,8,13]. The prevalent approach has been
to introduce a special timed tick action to the model, leaving synchronization
constructs untimed [15,40,8,13]. This tick action requires special attention in the
theory; for instance, it is useful to require that processes are weakly time alive,
i.e. never prevent time from passing by engaging in infinite interaction. Instead,
our model times output, alleviating the need to introduce a special action and
machinery around it. This yields a cleaner theory; for instance, progress is al-
ready built into our definition of interactive process. While this limits how much
work a process can do in a time unit, the discretization of time can be arbitrarily
fine. Whereas these calculi mostly use bisimulation to compare processes, our
simulation relation is more forgiving when it comes to reasoning about nonde-
terministic choice. Since our theory operates on transition systems as opposed
to on a language of processes, our theory is more general.

Focardi and Gorrieri’s work on information-flow secure interaction is par-
ticularly related to ours [13]. Their security properties are bisimulation-based,
with the H part of environment modeled explicitly as a process that binds all
H channels and only interacts on H channels. In contrast, our environments are
implicit, and can e.g. be any interactive process.

Timed I/O automata are real-time systems that synchronize through discrete,
timeless actions [21]. Like our interactive processes, these systems are input total,
and it is assumed that time can pass. However, systems are finite-state, and, like
the process algebras, passage of time is separate from synchronization.

In summary, while our model of time is weaker than those in some other timed
computation models (notably, dense time), time can be discretized as needed,
and conflating output with passage of time greatly simplifies our theory.
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Theories for secure composition (information-flow).With his seminal pa-
per [26], McCullough sparked a study into information-flow secure composition of
nondeterministic systems in the 80s that continues to this day [19,42,28,44,24,35].
This work studies the relative merits of several trace-based formalizations of pos-
sibilistic progress-sensitive noninterference [3,4], in terms of whether they are
preserved under e.g. universal composition, sequential composition (a.k.a. cas-
cade), and feedback. Whereas some properties are preserved under all of these
[19], others fail for some combinators, most notably feedback [43]. These models
are all untimed. It would be worthwhile to apply our timing model in these set-
tings and explore how these security properties classify programs. Requiring that
the presence of all output is L is a good starting point, since this makes these
properties timing-sensitive in our timing model. However, more work may be
needed, since the system models differ subtly (e.g. they are not all input total).
Our simulation relation is inspired by Rafnsson and Sabelfeld [35]. While their
relation was designed to facilitate an inductive proof principle, ours is designed
around a coinductive proof principle. Our simulation is simpler as a result.

Secure composition has also been studied in great detail in a process al-
gebraic setting [12,37,16,36,17,31], Parallel composition is one of the defining
features of process algebra, making compositional reasoning a key concern. In
contrast to this work (which studies compositionality of parallel composition),
our work studies compositionality of a language of combinators. Further, our
model is timed, while these are not. Finally, the behavioral equivalence of choice
is bisimulation, which we find to be too strict for possibilistic noninterference.

More recently, Mantel et al. explore secure composition in a shared-memory
concurrent setting [25,2]. They develop a security condition that is sensitive to
the assumptions that each thread makes on whether other threads can read
or write to shared variables. For instance, the right-component of the Clark-
Hunt example in § 2 assumes that no other thread reads X, and, thus, the two
components cannot be securely composed since the left-component violates this
assumption. Their approach is more fine-grained than ours, since compositional-
ity is parameterized by individual environment assumptions of subcomponents.
However, their system model is untimed, threads are arranged in a fixed, flat
structure, communication is only via shared memory, and only parallel composi-
tion is considered. In contrast, our system model is timed, and our combinators
enable modeling fairly arbitrary structures of interacting processes (including
shared memory), as demonstrated in § 7. Exploring whether this finer granular-
ity can be introduced into our theory is a promising direction of future work.

All of these approaches consider only combinators that passively glue together
two processes, facilitating interaction. In contrast, our combinators actually do
something, e.g. maintain state, switch processes on or off, and transform mes-
sages. As a result, our theory presents a rich toolset for reasoning about secure
composition, made even richer by its generic nature (arbitrary message types,
combinators parameterized by functions, etc.).
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