Lemma (prj):

forall
1LEL
it holds that

prj 1M : M -> {cn | lev(c) = 1}"e.
Proof.
Pick 1.
Pick m.
We show that
prji 1M : M -> {cn | lev(c) = 1}"e.

By definition of prj 1”M, either
(prj_1*M m) = Nothing, or

(prj_1”M m) Just cn for some ¢ and n such that
lev(c) = 1.
Thus

(prj_ "M m) € {cn | lev(c) = 1}"e.

Qed.

Lemma (IProc-Stream).

forall
p € IProc I 0
S,
if
p --s-»,
then
s € Stream I 0.

Proof.

Follows from the definition of
IProc I O,
--s-», and
Stream I O.

Qed.

Theorem:

forall
10 € L
p0 € IProc M M"e.
it holds that
SE 10 p0 € NI(=M,=M"e).

Proof.
Pick 10 and p@0.

Pick sO such that
SE 1 p0 --s0-».

To show:

forall 1,

there exists a relation
R

such that
(s0,SE 10 p0) € R

and



R is a 1-(=M)-(=M"e)-stream-simulation.

>k k%

Case on 1.

koK k

Case not (10 £ 1):

Pick

R={(s,SE 10 p) | s € Stream M {cn | lev(c) = 10}"e }.
KKk
To prove:

(s0,SE 10 pO) € R

Set
s = s0, and
p = po.

By Lemma (prj), and by definition of map,
p € IProc M {cn | lev(c) = 10}"e ).

By Lemma (IProc-Stream),
s € Stream M ( {cn | lev(c) = 10}"e ).

Thus

(s,SE 10 p) € R.
Thus

(s0,SE 10 pO) € R.
ko k
To prove:

R is a stream simulation.

We prove that
R satisfies 1), 2) and 3) in Def IV.2.

>k k%

case 1):

Pick
(?m.s,SE 10 p) € R.

kK k

To show:
(s,SE 10 p) € R.

kK k

Since
(?m.s,SE 10 p) € R,
we get
m.s € Stream M {cn | lev(c) = 10}"e.

Thus,
s € Stream M {cn | lev(c) = 10}"e.

Thus, by definition of s,
(s,SE 10 p) € R.

thus R satisfies 1) to be a simulation.



ko
kK k
ko k

case 2):

Pick
(s,SE 10 p) € R.

kK k

To show:
forall
m =M1 e,
there exists
pM
such that
(SE 10 p) ~~?m~» pM, and
(s,pM) € R.

kkk
Pick
m

such that
m =M1 e.

kK k

Since

p is interactive,
we get that

p is input total.

Since
p is input total,
we get that there is some

such that
p ~~?(obs 1”M m)~» p"'.

By definition of SE,
(SE 10 p) ~~?m~» (SE 10 p').

kK k

Set
pM = (SE 10 p').

kK&

Thus, by definition of s and pM,
(s,pM) € R.

thus R satisfies 1) to be a simulation.

kK%
kK k
kkk

Case 3):

Pick
(?m.s,SE 10 p) € R.

ko k

To show:
forall



m' =M1 m,
there exists

pM
such that
(SE 10 p) ~~?m'~» pM, and
(s,pM) € R.
ko k
Pick
ml
such that
m' =M1 m.
kk ok
Since
p is interactive,
we get that

p is input total.

Since
p is input total,
we get that there is some

p
such that

p ~~?(obs 1M m')~» p'.

By definition of SE,
(SE 10 p) ~~?m'~» (SE 10 p').

* k%

Set
pM = (SE 10 p').

ko k

Since

?m.s € Stream M ( {cn | lev(c) = 10}"e ),
we have that

s € Stream M ( {cn | lev(c) = 10}"e ).

>k k%

Thus, by definition of s and pM,
{s,pM) € R.
thus R satisfies 2) to be a simulation.

kK&
>k k%
* k%

Case 4):

Pick
(!m.s,(SE 10 p)) € R.

Since
Im.s € Stream M ( {cn | lev(c) = 10}"e® ), and
not (10 £ 1),

we get that
m =Ml e.

ko k

To show:
there exists



such that
m' =MLl m
(SE 10 p) —!m'—» pM, and
(s,pM) € R.

k%

Since
p is interactive,
we get that
p is output productive.

Since
p is output productive,
we get that there is some

mP, and
such that
p —!'mP>» p'.
K 5k %k
Set
m' = prj 10”M mP.
Then
(SE 10 p) —!m'—» (SE 10 p').
Set
pM = (SE 10 p').
Kk >k
Since
not (10 £ 1),
we get by definition of prj 10”M that
m' =Ml e.
By transitivity of (=Ml), we get that
m'" =1 m.
KKk
Since

Im.s € Stream M ( {cn | lev(c) = 10}"e ),
we have that
s € Stream M ( {cn | lev(c) = 10}"e )

>k k%

Thus, by definition of s and pM,
(s,pM) € R.

thus R satisfies 3) to be a simulation.

kK k
kkk
kK&

thus R is a simulation.

ko k
kK%
ko k

case (lo £ 1).



Pick
R={<s,SE10 p> | SE1 p --50-» }.

>k k%

To prove:
(sO0,SE 1 p) € R

Set
S

p

Then
(s,SE 10 p) € R.

s0,
po.

Thus,
(s0,SE 1 p) € R.

kK k
kK k
kK k

To prove:
R is a stream simulation.

We prove that
R satisfies 1), through 4) in Def IV.2.

kK k

case 1):

Pick

(?m.s,(SE 10 p)) € R
such that

m =M1 e.

To show:
(s,(SE 10 p)) € R.

kK&

By definition of R,
(SE 10 p) --?m.s-»w.

kK k

By definition of (=Ml), since
m =M1l e,
we get that
m = cn
for some c¢ for which not(lev(c) E 1).

since

10 E 1,
we get

not(lev(c) £ 10).
Thus,

obs 10”M m

n

Nothing.

>k k%

By definition of SE, and since p is interactive (input concrete),
(SE 10 p) ~~?m~» (SE 10 p).

Since
(SE 10 p) --?m.s-pw,
we get
(SE 10 p) ~~?m~» (SE 10 p) --s-pw,



and thus,
(SE 10 p) --s-puw.

k% %k

Set
pM = (SE 10 p).

Since
(s,(SE 10 p)) € R,

we get by definition of pM that
(s,pM) € R.

k% %k
>k k%
kK%

case 2):

Pick
(s,(SE 10 p)) €R

To show:
forall
m =Ml @
there exists
pM
such that
(SE 10 p) ~~?m~» pM, and
(s,pM) € R.

>k k%

Pick
m

such that
m =M1 e.

kK k

By definition of (=Ml), since
m =M1l e,
we get that either
m=e, Or
m = cn
for some c¢ for which not(lev(c) E 1).

In the latter case, since
10 c 1,

we get
not(lev(c) £ 10).

Thus, for both cases of m,
obs 10”M m = e.

kK%

By definition of SE, and since p is interactive (input concrete),
(SE 10 p) ~~?m~-» (SE 10 p).

kK

Set
pM = (SE 10 p).

Since
(s,(SE 10 p)) € R,

we get by definition of pM that
(s,pM) € R.



kK&
>k k%
k% %k

case 3):

Pick
(?m.s,(SE 10 p)) € R

To show:
for all
m' =M1l m
there exists
pM
such that
(SE 10 p) ~~?m'~» pM, and
{(s,pM) € R.

kK k

By definition of R,

(SE 10 p) --?m.s-pw.
By definition of SE and ---»w (and (MAP INe), (MAP _IN)),
there is some

for which
(SE 10 p) ~~?m-» (SE 10 p') --s-», and
p ~~?(obs 16”"M m)~» p"'.

>k kk

Pick

such that
m' =Ml m.

Case on m.
ook
case m =Ml e:
Since
10 c 1,
we get
obs_10”"M m = e.
*okok
Since
m' =M1 m.
we get by definition of (=Ml) that either

ml
ml

e, or
cn,

for some c¢ for which not(lev(c) E 1).
In the latter case, since

10 ct,



we get
not(lev(c) £ 10).
Thus, for both cases of m',

obs 10”"M m' = e.

>k >k >k
Since
obs 1M m = e,
obs 10”M m' = e, and

p ~~?(obs 10”M m)~» p',
we get
p ~~?(obs 16”M m')~» p"'.
Thus
(SE 10 p) ~~?m'~» (SE 10 p') --s-».
*okok
Set
pM = (SE 10 p').
Then, by definition of s and pM,

(s,pM) € R.

kK %k
kK %k
kK %k

case not(m =M1 e):
Then
m = cn,
for some c for which (lev(c) £ 1).

By definition of obs 10”M, since

m =Ml m',
we get

m' = m,
* k%

Thus, since

p ~~?(obs 16”"M m)~» p', and
(SE 10 p) ~~?m-» (SE 10 p') --s-»,

we get

p ~~?(obs 10”M m')~» p', and
(SE 10 p) ~~?m'~» (SE 10 p') --s-».

kK %k

Set



pM = (SE 10 p').

Then, by definition of s and pM,
(s,pM) € R.

k k%

kK %k
kK %k

thus R satisfies 2) to be a simulation.

k% %k
>k k%
kK%

case 4):
Pick
(!Im.s,(SE L p)) €ER

To show:
there exists

ml
such that
m' =M1 m,
(SE 10 p) —!m'—» pM, and
(s,pM') € R.
>k k k

By definition of R,
(SE 10 p) --!'m.s-pw.

By definition of SE and ---»w (and (MAP_OUT)),
there is some

D'
for which

(SE 1 p) —!m—>» (SE 1L p') --s-».
By definition of R,

(s,(SE L p')) € R.
*kok
Set

m 1
PA’

m
(SE1p').

Then
(s,pA') € R.

)k %k

thus R satisfies 4) to be a simulation.

kK&



kK k
kK k

thus R satisfies 1) to be a simulation.

k%
kK%
k%

Thus R is a 1-(=M)-(=M)-stream-simulation.
Thus,
for all 1,
there exists a relation
R
such that
(s0,SE 10 po) € R
and
R is a 1-(=M)-(=M)-stream-simulation.

Qed.



