
 

Lemma (prj): 

 

  forall 

    l ∈ L 

  it holds that 

    prj_l^M : M -> {cn | lev(c) = l}^●. 

 

Proof. 

 

  Pick l. 

  Pick m. 

   

  We show that 

    prj_l^M : M -> {cn | lev(c) = l}^●. 

 

  By definition of prj_l^M, either 

    (prj_l^M m) = Nothing, or 

    (prj_l^M m) = Just cn  for some c and n such that 

    lev(c) = l. 

 

  Thus  

    (prj_l^M m) ∈ {cn | lev(c) = l}^●. 

   

Qed. 

 

 

Lemma (IProc-Stream). 

 

  forall  

    p ∈ IProc I O 

    s, 

  if 

    p --s-▶, 

  then 

    s ∈ Stream I O. 

 

Proof. 

 

  Follows from the definition of  

  IProc I O,  

  --s-▶, and 

  Stream I O. 

 

Qed. 

 

 

Theorem: 

 

  forall 

    l0 ∈ L 

    p0 ∈ IProc M M^●. 

  it holds that 

    SE l0 p0 ∈ NI(=M,=M^●). 

 

Proof. 

 

  Pick l0 and p0. 

   

  Pick s0 such that 

    SE l p0 --s0-▶. 

   

  To show: 

  forall l, 

  there exists a relation 

    R 

  such that 

    ⟨s0,SE l0 p0⟩ ∈ R 

  and 



    R is a l-(=M)-(=M^●)-stream-simulation. 

   

  *** 

 

  Case on l. 

 

  *** 

   

  Case not (l0 ⊑ l): 

 

    Pick 

      R = { ⟨s,SE l0 p⟩ | s ∈ Stream M {cn | lev(c) = l0}^● }. 

 

    *** 

 

    To prove: 

      ⟨s0,SE l0 p0⟩ ∈ R 

 

    Set 

      s = s0, and 

      p = p0. 

 

    By Lemma (prj), and by definition of map, 

      p ∈ IProc  M {cn | lev(c) = l0}^● ). 

 

    By Lemma (IProc-Stream), 

      s ∈ Stream M ( {cn | lev(c) = l0}^● ). 

 

    Thus 

      ⟨s,SE l0 p⟩ ∈ R. 

 

    Thus 

      ⟨s0,SE l0 p0⟩ ∈ R. 

 

    *** 

 

    To prove: 

      R is a stream simulation. 

     

    We prove that 

    R satisfies 1), 2) and 3) in Def IV.2. 

 

    *** 

 

    case 1): 

 

      Pick 

        ⟨?m.s,SE l0 p⟩ ∈ R. 

 

      *** 

 

      To show: 

        ⟨s,SE l0 p⟩ ∈ R. 

 

      *** 

 

      Since 

        ⟨?m.s,SE l0 p⟩ ∈ R, 

      we get 

        ?m.s ∈ Stream M {cn | lev(c) = l0}^●. 

 

      Thus, 

        s ∈ Stream M {cn | lev(c) = l0}^●. 

 

      Thus, by definition of s, 

        ⟨s,SE l0 p⟩ ∈ R. 

 

      thus R satisfies 1) to be a simulation. 

 



      *** 

      *** 

      *** 

       

    case 2): 

 

      Pick 

        ⟨s,SE l0 p⟩ ∈ R. 

 

      *** 

 

      To show: 

      forall 

        m =Ml ●, 

      there exists 

        pM 

      such that 

        (SE l0 p) ~~?m~▶ pM, and 

        ⟨s,pM⟩ ∈ R. 

 

      *** 

 

      Pick 

        m 

      such that 

        m =Ml ●. 

 

      *** 

 

      Since 

        p is interactive, 

      we get that 

        p is input total. 

 

      Since 

        p is input total, 

      we get that there is some 

        p' 

      such that 

        p ~~?(obs_l^M m)~▶ p'. 

 

      By definition of SE, 

        (SE l0 p) ~~?m~▶ (SE l0 p'). 

 

      *** 

 

      Set 

        pM = (SE l0 p'). 

 

      *** 

 

      Thus, by definition of s and pM, 

        ⟨s,pM⟩ ∈ R. 

 

      thus R satisfies 1) to be a simulation. 

 

      *** 

      *** 

      *** 

       

    Case 3): 

 

      Pick 

        ⟨?m.s,SE l0 p⟩ ∈ R. 

 

      *** 

 

      To show: 

      forall 



        m' =Ml m, 

      there exists 

        pM 

      such that 

        (SE l0 p) ~~?m'~▶ pM, and 

        ⟨s,pM⟩ ∈ R. 

 

      *** 

 

      Pick 

        m' 

      such that 

        m' =Ml m. 

 

      *** 

 

      Since 

        p is interactive, 

      we get that 

        p is input total. 

 

      Since 

        p is input total, 

      we get that there is some 

        p' 

      such that 

        p ~~?(obs_l^M m')~▶ p'. 

 

      By definition of SE, 

        (SE l0 p) ~~?m'~▶ (SE l0 p'). 

 

      *** 

 

      Set 

        pM = (SE l0 p'). 

 

      *** 

 

      Since 

        ?m.s ∈ Stream M ( {cn | lev(c) = l0}^● ), 

      we have that 

        s ∈ Stream M ( {cn | lev(c) = l0}^● ). 

 

      *** 

 

      Thus, by definition of s and pM, 

        ⟨s,pM⟩ ∈ R. 

      thus R satisfies 2) to be a simulation. 

 

      *** 

      *** 

      *** 

       

    Case 4): 

 

      Pick 

        ⟨!m.s,(SE l0 p)⟩ ∈ R. 

 

      Since 

        !m.s ∈ Stream M ( {cn | lev(c) = l0}^● ), and 

        not (l0 ⊑ l), 

 

      we get that 

        m =Ml ●. 

 

      *** 

 

      To show: 

      there exists 



        m', and 

        pM 

      such that 

        m' =Ml m 

        (SE l0 p) ——!m'—▶ pM, and 

        ⟨s,pM⟩ ∈ R. 

 

      *** 

 

      Since 

        p is interactive, 

      we get that 

        p is output productive. 

 

      Since 

        p is output productive, 

      we get that there is some 

        mP, and 

        p' 

      such that 

        p ——!mP—▶ p'. 

 

      *** 

 

      Set 

        m' = prj_l0^M mP. 

 

      Then 

        (SE l0 p) ——!m'—▶ (SE l0 p'). 

 

      Set 

        pM = (SE l0 p'). 

 

      *** 

       

      Since 

        not (l0 ⊑ l), 

      we get by definition of prj_l0^M that 

        m' =Ml ●. 

 

      By transitivity of (=Ml), we get that 

        m' =_l m. 

         

      *** 

 

      Since 

        !m.s ∈ Stream M ( {cn | lev(c) = l0}^● ), 

      we have that 

        s ∈ Stream M ( {cn | lev(c) = l0}^● ) 

 

      *** 

 

      Thus, by definition of s and pM, 

        ⟨s,pM⟩ ∈ R. 

 

      thus R satisfies 3) to be a simulation. 

 

      *** 

      *** 

      *** 

 

      thus R is a simulation. 

 

      *** 

      *** 

      *** 

 

    case (l0 ⊑ l). 

 



      Pick 

        R = { <s,SE l0 p> | SE l p --s0-▶ }. 

 

      *** 

 

      To prove: 

        ⟨s0,SE l p⟩ ∈ R 

 

      Set 

        s  = s0, 

        p  = p0. 

       

      Then  

        ⟨s,SE l0 p⟩ ∈ R. 

 

      Thus, 

        ⟨s0,SE l p⟩ ∈ R. 

 

      *** 

      *** 

      *** 

 

      To prove: 

        R is a stream simulation. 

     

      We prove that 

      R satisfies 1), through 4) in Def IV.2. 

     

      *** 

         

      case 1): 

 

        Pick 

          ⟨?m.s,(SE l0 p)⟩ ∈ R 

        such that 

          m =Ml ●. 

 

        To show: 

          ⟨s,(SE l0 p)⟩ ∈ R. 

 

        *** 

 

        By definition of R, 

          (SE l0 p) --?m.s-▶ω. 

 

        *** 

 

        By definition of (=Ml), since 

          m =Ml ●, 

        we get that  

          m = cn 

        for some c for which not(lev(c) ⊑ l). 

         

        since 

          l0 ⊑ l, 

        we get 

          not(lev(c) ⊑ l0). 

        Thus,  

          obs_l0^M m = Nothing. 

 

        *** 

 

        By definition of SE, and since p is interactive (input concrete), 

          (SE l0 p) ~~?m~▶ (SE l0 p). 

 

        Since 

          (SE l0 p) --?m.s-▶ω, 

        we get 

          (SE l0 p) ~~?m~▶ (SE l0 p) --s-▶ω, 



        and thus,   

          (SE l0 p) --s-▶ω. 

 

        *** 

 

        Set 

          pM = (SE l0 p). 

 

        Since 

          ⟨s,(SE l0 p)⟩ ∈ R, 

        we get by definition of pM that 

          ⟨s,pM⟩ ∈ R. 

 

        *** 

        *** 

        *** 

 

      case 2): 

 

        Pick 

          ⟨s,(SE l0 p)⟩ ∈ R 

 

        To show: 

        forall 

          m =Ml ● 

        there exists 

          pM 

        such that 

          (SE l0 p) ~~?m~▶ pM, and 

          ⟨s,pM⟩ ∈ R. 

 

        *** 

 

        Pick 

          m 

        such that 

          m =Ml ●. 

 

        *** 

 

        By definition of (=Ml), since 

          m =Ml ●, 

        we get that either 

          m = ●, or 

          m = cn 

        for some c for which not(lev(c) ⊑ l). 

         

        In the latter case, since 

          l0 ⊑ l, 

        we get 

          not(lev(c) ⊑ l0). 

        Thus, for both cases of m, 

          obs_l0^M m = ●. 

 

        *** 

 

        By definition of SE, and since p is interactive (input concrete), 

          (SE l0 p) ~~?m~▶ (SE l0 p). 

 

        *** 

 

        Set 

          pM = (SE l0 p). 

 

        Since 

          ⟨s,(SE l0 p)⟩ ∈ R, 

        we get by definition of pM that 

          ⟨s,pM⟩ ∈ R. 

 



 

        *** 

        *** 

        *** 

 

      case 3): 

 

        Pick 

          ⟨?m.s,(SE l0 p)⟩ ∈ R 

 

        To show: 

        for all 

          m' =Ml m 

        there exists 

          pM 

        such that 

          (SE l0 p) ~~?m'~▶ pM, and 

          ⟨s,pM⟩ ∈ R. 

 

        *** 

 

        By definition of R, 

          (SE l0 p) --?m.s-▶ω. 

        By definition of SE and ---▶ω (and (MAP_IN●), (MAP_IN)), 

        there is some 

          p' 

        for which 

          (SE l0 p) ~~?m~▶ (SE l0 p') --s-▶, and 

          p ~~?(obs_l0^M m)~▶ p'. 

 

        *** 

 

        Pick 

          m' 

        such that 

          m' =Ml m. 

 

        *** 

 

        Case on m. 

 

        *** 

         

          case m =Ml ●: 

 

            Since  

 

              l0 ⊑ l, 

               

            we get 

 

              obs_l0^M m = ●. 

 

            *** 

 

            Since 

             

              m' =Ml m. 

 

            we get by definition of (=Ml) that either 

 

              m' = ●, or 

              m' = cn, 

 

            for some c for which not(lev(c) ⊑ l). 

            In the latter case, since 

 

              l0 ⊑ l, 

               



            we get 

 

              not(lev(c) ⊑ l0). 

 

            Thus, for both cases of m', 

 

              obs_l0^M m' = ●. 

 

            *** 

 

            Since 

 

              obs_l0^M m  = ●, 

              obs_l0^M m' = ●, and 

              p ~~?(obs_l0^M m)~▶ p', 

 

            we get 

 

              p ~~?(obs_l0^M m')~▶ p'. 

 

            Thus  

 

              (SE l0 p) ~~?m'~▶ (SE l0 p') --s-▶. 

               

            *** 

 

            Set 

 

              pM = (SE l0 p'). 

 

            Then, by definition of s and pM, 

 

              ⟨s,pM⟩ ∈ R. 

 

            *** 

            *** 

            *** 

             

          case not(m =Ml ●): 

 

            Then  

 

              m = cn, 

 

            for some c for which (lev(c) ⊑ l). 

 

            By definition of obs_l0^M, since 

 

              m =Ml m', 

 

            we get 

 

              m' = m. 

 

            *** 

 

            Thus, since  

 

              p ~~?(obs_l0^M m)~▶ p', and 

              (SE l0 p) ~~?m~▶ (SE l0 p') --s-▶, 

 

            we get 

 

              p ~~?(obs_l0^M m')~▶ p', and 

              (SE l0 p) ~~?m'~▶ (SE l0 p') --s-▶. 

               

            *** 

 

            Set 



 

              pM = (SE l0 p'). 

 

            Then, by definition of s and pM, 

 

              ⟨s,pM⟩ ∈ R. 

 

            *** 

            *** 

            *** 

             

        thus R satisfies 2) to be a simulation. 

 

        *** 

        *** 

        *** 

 

      case 4): 

 

        Pick 

         

          ⟨!m.s,(SE l p)⟩ ∈ R 

 

        To show: 

        there exists 

 

          m' 

 

        such that 

       

          m' =Ml m, 

          (SE l0 p) ——!m'—▶ pM, and 

          ⟨s,pM'⟩ ∈ R. 

 

        *** 

 

        By definition of R, 

         

          (SE l0 p) --!m.s-▶ω. 

 

        By definition of SE and ---▶ω (and (MAP_OUT)), 

        there is some 

 

          p' 

 

        for which 

         

          (SE l p) ——!m—▶ (SE l p') --s-▶. 

 

        By definition of R, 

         

          ⟨s,(SE l p')⟩ ∈ R. 

         

        *** 

 

        Set 

         

          m'  = m 

          pA' = (SE l p'). 

       

        Then 

         

          ⟨s,pA'⟩ ∈ R. 

 

        *** 

 

        thus R satisfies 4) to be a simulation. 

 

      *** 



      *** 

      *** 

 

      thus R satisfies 1) to be a simulation. 

 

      *** 

      *** 

      *** 

 

    Thus R is a l-(=M)-(=M)-stream-simulation. 

 

  Thus, 

  for all l, 

  there exists a relation 

 

    R 

     

  such that 

   

    ⟨s0,SE l0 p0⟩ ∈ R 

     

  and 

   

    R is a l-(=M)-(=M)-stream-simulation. 

 

Qed. 


