COMPOSITIONALITY PROOFS, CORE

Definition (noninterfering f)

forall
f:1->0,
(=1), (=0),

f is (=I,=0)-noninterfering,
f e NI(=I,=0),
iff
forall 1 . forall i, i' . 1 =I1 i' => (f i) =01 (f i'").

Definition (silence-preserving f)

forall
f:1->0,
(=I), (=0),

f is (=I,=0)-silence-preserving,
f ¢ PS(=I,=0),
iff

forall 1 . forall i . 1 =I1 e => (f i) =01 e.

Theorem (map-compose):

forall

p € IProc I' O ,
f:1I1->1',
g:0->0"',
(=I), (=1'), (=0), (=0'),

if
p e NI(=I',=0)
f e NI(=I,=I') n PS(=I,=I'), and,
g e NI(=I,=I")

then
(map f g p) € NI(=I,=0").

Proof.

Pick po, f, g, (=I), (=1I'), (=0), (=0') satisfying the above assumptions.

(note: p0 is p in the above theorem statement.
calling it p@® here eases notation throughout the proof).

Pick sO® such that



(map f g p0) --s0-p.

Pick 1.

* k%

To show: there exists a relation R such that
(s@,map f g p0) ¢ R

and
R is a 1-(=I)-(=0')-simulation.

* % %

Pick
R={ (s,map f g p) | exists sP . (sP <1 p) AND ( (map f g sP) --s--») }.

(here, < is a shorthand for <(=I')(=0) )

* k%

To prove:
(s0, map f g pd) < R

(we'll prove that R is a simulation in a moment).

Set
s = s0,
p = po,
and construct
sP
such that

(map f g sP) --s--p.
from the proof of the derivation of
(map f g pO) --sO--»

Then
(s,map f g p) e R.

Thus,
(s@,map f g pO) < R.

* k%

To prove:
R is a 1-(=I)-(=0')-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1):

Pick

(?i.s,(map f g p)) € R
such that

i =I1 e.

To show:
(s,(map f g p)) e R.

Since
(?i.s,(map f g p)) e R,
we have for some sP that
sP <1 p, and
(map f g sP) --?i.s--».

Since



(map f g sP) --?i.s--»,
we get by definition of map that,
for some sP',

sP = ?(f i1).sP', and

(map f g sP') --s--».

Since

f e NI(=I,=I') n PS(=I,=I"),
we get

f e PS(=I,=I").

Since
f ¢ PS(=I,=1I'), and
i =I1 e,

we get
(f i) =I'l e.

Since
sP <1 p, and
(f i) =I'l e,

we get by Def IV.2 1) that
sP' <1 p.

Since
(map f g sP') --s--», and
sP' <1 p,

we get by definition of R that
(s',(map f g p)) « R.

case 2):

Pick
(s,(map f g p))  R.

To show:
forall
i =I1 e,
there exists
pM'
such that
(map f g p) ~~i~~» pM', and
(s,pM') e R.

Pick
i =I1 e.

Since
(s,(map f g p)) R,
we have for some sP that
sP <1 p, and
(map f g sP) --s--p.

Since

f e NI(=I,=I') n PS(=I,=1"),
we get

f e PS(=I,=1").

Since
f ¢ PS(=I,=1"'), and
i =I1 o,

we get
(f 1) =I'l oe.

Since
sP <1 p, and



(f i) =I'l e,
we get by Def IV.2 2) that
there exists

such that
p~~(f i)~~» p', and
sP <1 p'.
Let
pM' = (map f g p').
Then

(map f g p) ~~i~~» pM'.

Since
(map f g sP) --s--p,
sP <1 p', and
(map f g p) ~~i~~» pM',
we get by definition of R that
(s,pM') e R.

case 3):

Pick
(?i.s,(map f g p)) € R.

To show:
forall
i' =I1 i,
there exists
pM'
such that
(map f g p) ~i'~-» pM', and
(s,pM') e R.

Pick
i' =I1 i.

Since
(?i.s,(map f g p)) € R,
we have for some sP that
sP <1 p, and
(map f g sP) --?i.s--p.

Since

(map f g sP) --?i.s--»,
we get by definition of map that,
for some sP',

sP = ?2(f 1).sP', and

(map f g sP') --s--».

Since

f e NI(=I,=I') n PS(=I,=1"),
we get

f e NI(=I,=I").

Since
f e NI(=I,=I'), and
it =I1'1 i,

we get
(f i') =I'1l (f i).

Since
sP <1 p,
sP = ?(f 1).sP', and
(f i") =1'1 (f i),



we get by Def IV.2 3) that
there exists
pl
such that
p~(fi')~~» p', and
sP' <1 p'.

Let
pM' = (map f g p').
Then
(map f g p) ~~i'~~» pM'.

Since
(map f g sP') --s--»,
sP' <1 p', and
(map f g p) ~~1i'~~» pM'.
we get by definition of R that
(s,pM') € R.

case 4):

Pick
(16.s,(map f g p)) e R.

To show:
exists
6' =I1 o,
and
pM'
such that
(map f g p) —6'—» pM', and
(s,pM') e R.

Since
(!é-sr(map f g p)) € R,
we have for some sP that
sP <1 p, and
(map f g sP) --16.s--».

Since

(map f g sP) --10.s5--»,
we get by definition of map that,
for some o and sP',

6 =90,

sP = lo.sP', and

(map f g sP') --s--p».

Since
sP <1 p, and
sP = lo.sP',

we get by Def IV.2 4) that
there exist

o' =01 o, and
such that

p—o'—» p', and

sP' <1 p'.

Since
g € NI(=0,=0'), and
o' =I'1l o,

we get
(g 0') =0'1 (g o).

Let



pM' = (map f g p').
Then

(map f g p) —(g 0o')—» pM'.

Since
(map f g sP') --s--p,
sP' <1 p',

(g o') =0'1 (g o),

pM' = (map f g p'), and

(map f g p) —(g o')—» pM',
we get by definition of R that

(s,pM') € R.
Thus
R is a 1-(=I)-(=0')-simulation.
Thus,
forall 1,

exists an 1-(=I)-(=0')-simulation R such that
(sO,map f g pO) < R.

Thus
(map f g p0@) e NI(=I,=0").

Qed.

Definition (noninterfering f)
forall

f:I->V ->0,
(=I), (=V), (=0),

f is (=I,=V,=0)-noninterfering,
f e NI(=I,=V,=0),

iff
forall 1 .
forall i, i' . i =I1 i' =>
forall v, v' . v =Vl v' =>

(f i v) =01 (f i' v').

Definition (equivalence-preserving f)
forall

f:I->V->YV,
(=1), (=V)

f is (=I,=V)-equivalence-preserving,
f e PE(=I,=V),
iff

forall 1 .
forall 1 . 1 =I1 e =>
forall v .
(f v) =Vl v.



Let

egpair'(=A,=B) 1 ={((a,b),{(a',b")) | a=Al a' A b=Blb'}
egpair'eL(=A,=B) 1 = { (e,(a,b)) | a =A1 e }

eqpair'eR(=A,=B) 1 = { ((a,b),e) | b =B1 e }
eqgpair'eLR(=A,=B)1 = { ((a,b),e) | a =A1l e A b =Bl e }

RTC(R) is the reflexive transitive closure of R.

eqpair(=A,=B) 1 = RTC(eqgpair'(=A,=B) 1)

egpaireL(=A,=B) 1 = RTC(eqpair'(=A,=B) 1 u eqpair'eL(=A,=B) 1)

eqpaireR(=A,=B) 1 = RTC(egpair'(=A,=B) 1 U eqpair'eR(=A,=B) 1)

eqpaireLR(=A,=B) 1 = RTC(egpair'(=A,=B) 1 U eqpair'eLR(=A,=B) 1)

eqpaire(=A,=B) 1 = RTC(eqgpair'(=A,=B) 1 U egpair'eL(=A,=B) 1 U eqpair'eR(=A,=B)

Theorem (sta-compose):
forall

p € IProc (V*I) O ,

f:I->V ->YV,

g:0->V ->YV,

(=I), (=V), (=0),
if

p e NI(=V*I,=0)
f ¢ NI(=I,=V,=V) n PE(=I,=V), and
g e NI(=0,=V,=V)

then forall v,

(sta f g v p) € NI(=I,=V*0),

where
(=V*I) = eqpaireR(=V,=I)
(=V*0) = eqgpair(=V,=0)
Proof.

Pick po, vo, f, (=I), (=V), (=0), satisfying the above assumptions.

(note: p0 is p in the above theorem statement.
calling it p@ here eases notation throughout the proof).

Pick s0 such that
sta f g vO pO --sO-p.

Pick 1.
Let (=V*I) = eqpaireR(=V,=I).

* k%

To show: there exists a relation R such that
(s@,sta f g v@ pO) € R

and
R is a 1-(=V*I)-(=0)-simulation.



*k *

Pick
R={ (s,sta fgvp) | exists sP, vS . (sP <1 p) AND (vS =V1 v) AND (sta f g vS
SP --s--») }.
(here, < is a shorthand for <(=V*I)(=0) )

* k%

To prove:
(s@, sta f g v p@) € R

(we'll prove that R is a simulation in a moment).

Set
s = S0,
p = po,
vV = V0,
and construct
sP
such that

sta f gVv sP --s--p
from the proof of the derivation of
sta f g vO pO® --s0--p.

Then
(s,sta f g v p) € R.

Thus,
(s@,sta f g vO pO) e R.

* k%

To prove:
R is a 1-(=V*I)-(=0)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1):

Pick

(?i.s,(sta f g v p)) R
such that

i =I1 e.

To show:
(s,(sta f g v p)) €R.

Since
(?i.s,(sta f g v p)) R

we have for some sP and vS =V1 v that
sP <1 p, and
sta f g vS sP --?i.s--p.

Since

sta f g vS sP --?i.s--»,
we get by definition of staI that,
for some sP',

sP = ?((f 1 vS),i).sP', and

sta f g (fivS) sP' --s--p.

Since
i =I1 e,
we get by definition of (=V*I) that



((f i vS),i) =V*Il e.

Since
sP <1 p, and
((f 1 vS),1) =V*I1 e.

we get by Def IV.2 1) that
sP' <1 p.

Since

f e NI(=I,=V,=V) n PE(=I,=V),
we get

f e PE(=I,=V).

Since
f ¢ PE(=I,=V), and
i =I1 e,

we get
(f i vS) =v1 vs.

Since
vS =V1 v, and
(f 1 vS) =Vl vS.

we get by transitivity of (=V1) that
(f 1 vS) =Vl v.

Since
sta f g (f ivS) sP' --s--»,
sP' <1 p, and
(f 1 vS) =Vl v,

we get by definition of R that
(s',(sta f gvp)) eR.

case 2):

Pick
(s,(sta f g v p)) €R.

To show:
forall
i =I1 e,
there exists
pS'
such that
(sta f gvp) ~—~i~-» pS', and
(s,pS') e R.

Pick
i =I1 e.

Since
(s,(sta f g v p)) R,

we have for some sP and vS =V1 v that
sP <1 p, and
sta f g vS SP --s--p,

Since
i =I1 e,

we get by definition of (=V*I) that
((f 1 v),1) =Vv*I1 e.

Since

sP <1 p, and

((f 1 v),1) =v*Il e.
we get by Def IV.2 2) that
there exists



p 1

such that
p~—~{((f iv),i)~—» p', and
sP <1 p'.

Since

f e NI(=I,=V,=V) n PE(=I,=V),
we get

f e PE(=I,=V).

Since

f e PE(=I,=V),
we get

(f 1iv) =Vl v.

Since
(f 1 v) =vl v, and
v =V1 vS§,

we get by transitivity of (=V) that
(f i v) =Vl vsS.

Let

pS' = (sta f g (fiv)p').
Then

(sta f gvp) ~—~i~-» pS'.

Since
sta f g vS SP --s--»,
sP <1 p', and
(f 1 v) =Vl vS.
we get by definition of R that
(s,(sta f g (fiv)p')) R.

case 3):

Pick
(?i.s,(sta f g v p)) € R.

To show:
forall
i' =11 i,
there exists
pS'
such that
(sta fgvp)~~—~i"~->» pS', and
(s,pS') € R.

Since
(?i.s,(sta f g vp)) R,

we have for some sP and vS =V1 v that
sP <1 p, and
sta f g vS sP --?i.s--p.

Since

sta f g vS sP --?i.s--»,
we get by definition of staI that,
for some sP',

sP = ?((f i vS),i).sP', and

sta f g (f ivS) sP' --s--p.

Since

f e NI(=I,=V,=V) n PS(=I,=V),
we get

f e NI(=I,=V,=V).



Since
f e NI(=I,=V,=V),
i' =I1 i, and
v =V1 vS§,
we get
(f 1 vS) =vl (f 1' v).

Since
i' =I1 i, and
(f ivs) =vl (f i' v),

we get by definition of (=V*I) that
((f 1 vsS),1i) =v*I ((f i' v),1i').

Since

sP <1 p,

sP = ?((f i v§),i).sP', and

((f i vS),1i) =v*I ((f i' v),1i'"),
we get by Def IV.2 3) that
there exists

such that
p ~—~((f i' v),i')~-» p', and
sP' <1 p'.

Let

pS' = (sta f g (fi' v) p').
Then
(sta f gvp) ~—~i'~-» pS'.

Since
sta f g (f i vS) sP' --s--»,
sP' <1 p',

(f i vsS) =vl (f i' v),
ps' = (sta f g (f1i' v) p'), and
(sta f g v p) —~i'~~» pS’',

we get by definition of R that
(s,pS') e R.

case 4):

Pick
(1{(v0,0).s,(sta f g v p)) R.

To show:
exists
(vO0',0') =v*01 (vO,o0),
and
pS'
such that
(sta f g v p) —(vO',0')» pS', and
(s,pS') € R.

Since
(!(v0,0).s,(sta f g v p)) € R,

we have for some sP and vS =V1 v that
sP <1 p, and
sta f g vS sP --1(v0,0).s--p.

Since
sta f g vS sP --1(v0,0).5--p»,
we get by definition of sta that

vO = g 0 VS,
and for some sP',
sP = lo.sP', and

sta f g vS sP' --s--p.



Since

sP <1 p, and

sP = lo.sP',
we get by Def IV.2 4) that
there exist

oP =01 o, and

p',
such that
p —oP—» p', and
sP' <1 p'.
Let
o' = oP, and
vOo' = g o' v.
Since
oP =01 o, and
oP = o',
we get by transitivity of (=01) that
o' =01 o.
Since
vO = g 0 VS,
vo'= g o' v,
vS =V1 v, and
g e NI(=0,=V,=V),
we get
v0'=V1l vO.
Since
o' =01 o, and
v0'=V1l voO,

we get by definition of (=V*0) that
(v0',0') =v*0l1l (vO0,o0).

Since
p —oP—» p', and
o' = oP,

we get

p—o'—» p'.

Let
pS' = (sta fgvp').
Then, since
p—o'—» p', and
vO0' = g o' v.
we get
(sta f g v p) —(v0',0')—» pS'.

Since

sta f g v sP' --s--p,

sP' <1 p',

(v0',0') =v*0l1 (vO,o0),

pS' = (sta f gvp'), and

(sta f gvp) —(v0',0')—» pS',
we get by definition of R that

(s,pS') € R.
Thus
R is a 1-(=I)-(=V*0)-simulation.
Thus,
forall 1,

exists an 1-(=I)-(=V*0)-simulation R such that
(s0,sta f g vO pO) < R.



Thus
(sta f g vO pO) e NI(=I,=V*0).

Qed.

Definition (oblivious observers)

forall

(=vV),

1 is oblivious to v under (=V),
0(v,=V),
iff

vV =V e,

1 is oblivious under (=V,
0(=V),
iff
forall v . 0O(v,=V).
End Definition
Definition (fully aware observers)

forall

(=X),

1 is aware of x under (=X),
A(x,=X),
iff
forall x . x =X1 x => x = X.
1 is aware under (=X),
A(=X),
iff
forall x . A(x,=X).
Definition
Remark
While obliviousness and awareness are mutually exclusive, the
negation of one does not imply the other. (An observer may be able
to distinguish one value from another (thus not being oblivious to
it), without observing it fully (thus not being fully aware of it)).
End Remark
Definition (oblivious to a process)

forall

p € IProc I O,
(=0),

1 is oblivious to p under (=0), 1 e O(p,=0), iff
forall i . p ~~i-» p' =>1 ¢ 0(p',=0), and
forall o . p—o» p' =>1 ¢ 0(p',=0) A~ 0 =01 .

End Definition



Let
egmaybe'(=v) 1 = { (Just v,Just v') | v =V1 v' } u { (Just v,e) | v =Vl e }
eqmaybe'(L) 1 | 1 e L =g
| otherwise = { (Nothing,e) }
eqmaybe(L,=V) 1 = RTC(egmaybe'(=V) 1 u eqmaybe'(L))

Theorem (swi-compose):
forall

p € IProc I (Bool*0) ,
(1), (=0), (=Bool),

if

p € NI(=I,=Bool*0), and
forall 1 . 1 ¢« A(True,=Bool) => 1 ¢ 0(p,=Bo0l*0)

then forall b,

(swiI b p) e NI(=Bool*I,=Maybe0),

where
(=Bool*I) = eqpaireLR(=Bool,=T)
(=Bo0l*0) = egpaireR (=Bool,=0)
(=MaybeO) = egmaybe(A(True,=Bool),=0).
Proof.

Pick po, bo, (=I), (=0), (=Bool), satisfying the above assumptions.

(note: p0 is p in the above theorem statement.
calling it p@ here eases notation throughout the proof).

Pick s® such that

(swi b0 pO) --sO-».

Pick 1.

Let
(=Bo0l*I) = egpaireLR(=Bool,=I)
(=Bool*0) = eqpaireR (=Bool, =0)
(=MaybeO) = egmaybe(A(=Bool),=0).

* k%

To show: there exists a relation R such that
(sO@,swi b® pO) ¢ R, and
R is a 1-(=Bool*I)-(=MaybeO)-simulation.

* k%

Two cases to consider for 1.

Case 1 « A(True,=Bool)



Pick

R=1{(s,swib p) | s e Stream (Bool*I) ((=MaybeO)l e) }.

* k *

To prove:
(s0,swi b® po) < R.

Since
1 ¢ A(True,=Bool),

we get by definition of (=MaybeO) that
Nothing (=MaybeO)l e,

and, forall o =01 e,
(Just 0) (=MaybeQ)l e.

Since

1 ¢ A(True,=Bool),
we get

1 ¢ 0(p,=Boo0l*0).

Since
1l € 0(p,=Bool*0),
(Just o) (=Maybe0)l e , forall o =01 e, and
Nothing (=MaybeO)l e,

we get by definition of (=Bool*0) and (=MaybeO) that
s@ e Stream (Bool*I) ((=MaybeO)l e).

Set
s = s0,
b = bo,
p = po.
Then

(s,swi b p) € R.

Thus,
(s0,swi b® po) e R.

* k *

To prove:
R is a 1-(=Bool*I)-(=MaybeO)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1):

Pick

(?(bI,i).s,(swi b p)) € R
such that

(bI,i) =I1 e.

To show:
(s,(swi b p)) € R.

Since

?(bI,i).s e Stream (Bool*I) ((=Maybe0)l e),
we get

S e Stream (Bool*I) ((=MaybeO)l e).

Since
S e Stream (Bool*I) ((=MaybeO)l e),



we get by definition of R that
{s,(swi b p))  R.

Case 2):

Pick
(s, (swi b p)) e R.

To show:
forall
(b,i) (=Bool*I)1 e,
there exists
pS'
such that
(swi b p) ~~(b,i)~~» pS', and
(s,pS') € R.

Pick
(b,i) (=Bo0l*I)1 e.

Since p is interactive,
we get by rule (Swi-In) that
there exists a b', p' such that

(swi b p) ~~(b,i)~» (swi b' p').

Let
pS' = (swi b' p').
Then
(swi b p) ~~(b,i)~» pS'.

Since
S e Stream (Bool*I) ((=MaybeO)l e),
pS' = (swi b' p'),
(swi b p) ~~{(b,i)~» pS', and
(b,i) (=Bool*I)1l e,

we get by definition of R that
(s,pS') € R.

Case 3):

Pick
(?(b,i).s,(swi b p)) e R.

To show:
forall
(b',i') (=Bool*I)1l (b,i),
there exists
pS'
such that
(swi b p) ~~(b',i')~~» pS', and
(s,pS') € R.

Pick
(b',i") (=Bool*I)1l (b,i).

Since p is interactive,
we get by rule (Swi-In) that
there exists a b', p' such that

(swi b p) ~~(b',i')~» (swi b' p').

Let
pS' = (swi b' p').
Then
(swi b p) ~~(b',i')~» pS"'.



Since
S e Stream (Bool*I) ((=MaybeO)l ),
pS' = (swi b' p'),
(swi b p) ~~(b',i')~» pS', and
(b',i') (=Bool*I)l (b,i),

we get by definition of R that
(s,pS') € R.

Case 4):

Let
X = Maybe O.

Pick
(!'x.s,(swi b p)) € R.
To show:
exists
x' (=MaybeO)1l x,
and
pS'
such that
(swi b p) —x'-—» pS', and
(s,pS') € R.

By definition of R,
X (=Maybe0)l e.

Case on b.
Case b=True:

Since
1 € 0(p,=Bool*0),
and since p is interactive,
we get that there exists some
(b',0') (=Bo0l*0)1 e
such that
p —(b',0")» p'.

Since
(b',0') (=Bo0l*0)1l e,

we get by definition of (=Bool*0) that
0' =01 e.

Since
p—(b',0")» p',

we get by rule (Swi-Out) that
(swi b p) —Just o'—» (swi (b e b') p').

Since
(b',0') (=Bool*0)1l e,
we get by definition of (=Bool*0) that

o' =01 e.
Since
o' =01 o,

we get by definition of (=MaybeO) that
Just o' (=MaybeO)l

Let

x' = Just o'.
Since

x' = Just o'.

Just o' (=MaybeO)1l
X (=Maybe0)1l e.



we get by transitivity that
x (=Maybe0O)1l x'.

Let

pS' = (swi (b & b') p').
Then

(swi b p) —x'—» pS'.

Since
S e Stream (Bool*I) ((=MaybeO)l e),
pS' = (swi (b & b') p'),
(swi b p) —x'-» pS', and
X (=Maybe0O)1l x'.

we get by definition of R that
(s,pS') € R.

Case b=False:

we get by rule (Swi-_Oute) that
(swi b p) —Nothing—» (swi b p).

Since
1 ¢ A(True,=Bool),

we get by definition of (=MaybeO) that
Nothing (=Maybe0)l e.

Let
x' = Nothing.

Since
x' = Nothing,
Nothing (=Maybe0)l e,
X (=Maybe0)1l e.
we get by transitivity that
x (=Maybe0)1l x'.

Let
pS' = (swi b p).
Then
(swi b p) —x'-—» pS'.

Since
S e Stream (Bool*I) ((=MaybeO)l e),
pS' = (swi b p),
(swi b p) —x'—» pS', and
X (=Maybe0O)1l x'.

we get by definition of R that
(s,pS') € R.

Case True e A(1l,=Bool)

Pick
R={ (s,swib p) | exists sP, bS . (sP <1 p) AND (bS (=Bool)l b) AND (swi bS sP
--s--») }.
(here, < is a shorthand for <(=Boo0l*I)(=Maybe0) )

* % %

To prove:
(s@, swi b® pO) € R
(we'll prove that R is a simulation in a moment).

Set
s = s0,
p = po,



b = bo,
and construct
sP
such that
(swi b sP) --s--»
from the proof of the derivation of
(swi b0 pO) --sO--».

Then
(s,swi b p) e R.

Thus,
(s0,swi b® po) e R.

* k *

To prove:
R is a 1-(=Bool*I)-(=Maybe0)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1):

Pick

(?(bI,i).s,(swi b p)) € R
such that

(bI,i) (=B0o0l*I)1l e.

To show:
(s,(swi b p)) e R.

Since
(?(bI,i).s,(swi b p)) € R

we have for some sP and bS (=Bool)l b that
sP <1 p, and
(swi bS sP) --?(bI,i).s--».

Since

(swi bS sP) --?(bI,i).s--»,
we get by definition of swi that,
for some sP',

sP = ?i.sP', and

(swi (bS @ bI) sP') --s--p.

Since
(bI,i) (=Bool*I)l e, and
True e A(1,=Bool),

we get by definition of (=Bool*I) that
bI = False.

Thus, by definition of &,
b & bI = b, and
bS @ bI = bS.

Since

bS & bI = bS, and

(swi (bS @ bI) sP') --s--p.
we get

(swi bS sP') --s--».

Since
(bI,i) (=Bo0l*I)1 e,

we get by definition of (=Bool*I) that
i =I1 e,



Since
sP <1 p, and
sP = ?i.sP', and
i =I1 e,
we get by Def IV.2 1) that
sP' <1 p.

Since
(swi bS sP') --s--p.
sP' <1 p, and
bS (=Bool)l b,
we get by definition of R that
(s,swi b p}) ¢ R.

case 2):

Pick
(s,(swi b p)) € R.

To show:
forall
(bI,i) (=Bool*I)l e
there exists
pS'
such that
(swi b p) ~~(bI,i)~~» pS', and
(s,pS') e R.

Since
(s,(swi b p)) € R,

we have for some sP and bS (=Bool)l b that
sP <1 p, and
(swi bS sP) --s--p.

Pick
(bI,i) =I1 e.

Since
(bI,i) (=Bo0l*I)1l e,

we get by definition of (=Bool*I) that
i =I1 e.

Since
sP <1 p, and
i =I1 e,
we get by Def IV.2 2) that
there exists
pl
such that
p ~~i~~-» p', and
sP <1 p'.

Since
(bI,i) (=Bool*I)l e, and
True e A(1,=Bool),

we get by definition of (=Bool*I) that
bI = False.

Thus, by definition of &,
b & bI =b.

Since
p ~~i~~» p', and
b e bI = b,



we get by (Swi-In) that
(swi b p) ~~(bI,i)~~» (swi b p').

Let
pS' = (swi b p').
Then
(swi b p) ~~(bI,i)~~» pS'.

Since
(swi bS sP) --s--».
sP <1 p',
bS (=Bool)l b,
pS' = (swi b p'),

(bI,i) (=Bool*I)l e, and
(swi b p) ~~(bI,i)~~» pS',
we get by definition of R that

(s,pS') € R.

case 3):

Pick
(?(bI,i).s,(swi b p)) e R.

To show:
forall
(bI',i') (=Bool*I)1l (bI, i),
there exists
pS'
such that
(swi b p) ~~(bI',i')~~-» pS', and
(s,pS') e R.

Since

(?(bI,i).s,(swi b p)) € R,
we have for some

sP and

bS (=Bool*I)l b
that

sP <1 p, and

(swi bS sP) --?(bI,i).s--».

Since

(swi b sP) --?(bI,i).s--»,
we get by definition of swi that,
for some sP',

sP = ?i.sP', and

(swi (bS @ bI) sP') --s--».

Pick
(bI',i') (=Bool*I)1l (bI',i')}.

Since
(bI',i') (=Bool*I)1l (bI',i'),

we get by definition of (=Bool*I) that
bI' (=Bool)l bI, and
i' =11 i.

Since
sP <1 p,
sP = ?i.sP', and
i' =I1 i,
we get by Def IV.2 3) that
there exists
pl
such that



p~~i'~~-» p', and
sP' <1 p'.

Since
b (=Bool)l bs,
bI' (=Bool)l bI, and
True e A(1,=Bool),
we get
(b ® bI') (=Bool)l (bS @ bI).

Let

pS' = (swi (b @& bI') p').
Then

(swi b p) ~~(bI',i')~~» pS'.

Since
(swi (bS @& bI) sP') --s--»,
sP' <1 p',

(b ® bI') (=Bool)l (bS @ bI),
pS' = (swi (b & bI') p'),
(swi b p) ~~(bI',i')~~» pS', and
(bI',i') (=Bool*I)l (bI',i'}),

we get by definition of R that
(s,pS') e R.

case 4):

Let
0 = Maybe O.

Pick
(16.s,(swi b p)) e R.

To show:
exists
6' (=Maybe0O)l 9,
and
pS'
such that
(swi b p) —6'» pS', and
(s,pS') € R.

Since
(16.s,(swi b p)) e R,
we have for some

sP and

bS (=Bool)l b
that

sP <1 p, and

(swi bS sP) --16.s--».
Case on b.

Case b = False:

Since
b = False,

we get
(swi b p) —6'» (swi b p), and
6' = Nothing.

Since
True ¢ A(l,=Bool),
bS (=Bool)l b, and
b = False



we get

bS = False.
Since
bS = False,
we get
(swi bS sP) —6—+» (swi bS sP) --s--», and
6 = Nothing.
Since
0 = Nothing, and

6' = Nothing,
we have
6' (=Bool)l 6.

Let
pS' = (swi b p).
Then
(swi b p) —6'—» pS'.

Since
(swi bS sP) --s--»,
sP <1 p,

6' (=Bool)l ¢,
pS' = (swi b p), and
(swi b p) —06'» pS',
we get by definition of R that
(s,pS') € R.

Case b = True:

Since
True ¢ A(l,=Bool),
bS (=Bool)l b, and
b = True

we get
bS = True.

Since
bS = True, and
(swi bS sP) --16.s5--»,
we get for some o, bO and sP' that
6 = Just o,
sP = 1{b0,0).sP', and
(swi bS sP) —6—+» (swi (bS @ b0) sP') --s--p.

Since
sP <1 p, and
sP = 1{(b0,0).sP',
we get by Def IV.2 4) that
there exist
(b0',0') (=Bool*0)1l (bO,0), and
p',
such that
p —(b0',0')—» p', and
sP' <1 p'.

Since
(b0',0') (=Bool*0)1 (boO,o0)

we get by definition of (=Bool*0) that
bo'(=Bool)l b0, and

o' =01 o.
Let
6' = Just o'.

Then, by definition of (=MaybeO),



since
6 = Just o, and
o' =01 o,

we get
6' (=Maybe0)1l 6.

Since
b = True,
p —(b0',0')—» p', and
6' = Just o',

we get by (Swi-Out) that
(swi b p) —6'» (swi (b e b0') p').

Since
b = True,
bS = True,

b0'(=Bool)l b0, and
True e A(l,=Bool),
we get that
(bS @ b0) (=Bool)l (b @ b0').

Let

pS' = (swi (b @ b0') p').
Then, since

(swi b p) —06'» (swi (b e b0') p'),
we get

(swi b p) —06'—» pS'.

Since
(swi (bS @ bO) sP') --s--p,
sP' <1 p',

6' (=Maybe0)1l 9,

pS' = (swi (b & b0") p'),

(swi b p) —6'» pS', and

(bS @ b0) (=Bool)l (b @ b0').
we get by definition of R that

(s,pS') € R.
Thus
R is a 1-(=Bool*I)-(=MaybeO)-simulation.
Thus,
forall 1,

exists an 1-(=Bool*I)-(=MaybeO)-simulation R such that
(s@,swi b® pO) e R.

Thus
(swi bO® pO®) e NI(=Bool*I,=Maybe0).

Let

eqmaybe’ 1
eqmaybe(=V) 1

{ (Nothing, e) }
RTC(egmaybe'(=V) 1 U egmaybe')

(note the difference between egmaybe(=V) and eqmaybe(L,=V))

Theorem:



forall

p € IProc I O ,
(=1), (=0),

if
p e NI(=I,=0) ,
then
(maybe p) e NI(=MaybeI,=I),
where
(=MaybeI) = egmaybe(=I).
Proof.
Pick po, (=I), (=0) satisfying the above assumptions.

Pick s© such that
(maybe p0) --s0-».

Pick 1.

Let
(=MaybeI) = egmaybe(=I).

* k%
To show: there exists a relation R such that
(s0,maybe p0) ¢ R
and
R is a 1-(=MaybeI)-(=I)-simulation.
Pick
R = { (s,maybe p) | exists sP . sP <1 p AND (maybe sP) --s-» }.
(here, < is a shorthand for <(=Maybel)(=0) )
* k%

To prove:
(s0,maybe p0) < R.

Set
s = s0,
p = po,
and construct
sP
such that

(maybe sP) --s--p»
from the proof of the derivation of
(maybe p0) --s0--».

Then
(s, maybe p) € R.

Thus,
(s0,maybe p0) < R.

* k%

To prove:



R is a 1-(=MaybeI)-(=0)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

Let
I = Maybe I.
(note the accent)

case 1)

Pick

(?i.s, (maybe p)) e R
such that

i (=MaybeI)l e.

To show:
(s, (maybe p)) < R.

Since
(Sr (maybe p)) e R,

we get for some sP that
(maybe sP) --?i.s--» and
sP <1 p.

Case on 1.
Case 1 = Nothing:

Since
(maybe sP) --?i.s--», and
i = Nothing,

we get by definition of (Maybe-Ine) that
(maybe sP) --s--p.

Since
(maybe sP) --s--» and
sP <1 p,

we get

(s, (maybe p)) < R.
Case i = Just i, for some 1i:

Since

(maybe sP) --?i.s--»,
we get by definition of (Maybe-In) that,
for some sP',

sP = ?i.sP', and

(maybe sP') --s--p.

Since
i (=MaybeI)l e,

we get by definition of (=MaybeI) that
i =I1 e.

Since
sP <1 p,
sP = ?i.sP', and
i =I1 e,

we get by 1) that
sP' <1 p.

Since
(maybe sP') --s--» and
sP' <1 p,

we get



(s, (maybe p)) e R.
case 2)

Pick
(s, (maybe p)) e R.

To show:

forall
i (=MaybeI)l o,

it holds that, for some pL',
(maybe p) ~~i~» pM' and
(s,pM') e R.

Since
(SI (maybe p)) € R,
we get
(maybe sP) --s--» and
sP <1 p.

Pick
i (=MaybeI)l e.

Case on 1.
Case 1 = Nothing:

Since
(maybe sP) --s--», and
i = Nothing,

we get by definition of (Maybe-Ine) that
(maybe sP) ~~i~~» (maybe sP).

Since
(maybe sP) ~~i~~» (maybe sP), and
(maybe sP) --s--p,

we get
(maybe sP) --?i.s--p.

Since
i = Nothing,

we get by definition of (Maybe-Ine) that
(maybe p) ~~i~» (maybe p).

Let

pM' = (maybe p).
Then
(maybe p) ~~i~» pM'.

Since
(maybe sP) --?i.s--»,
sP <1 p,

pM' = (maybe p),
(maybe p) ~~i~» pM', and
i (=MaybeI)l e,
we get
(?s,pM') e R.

Case 1 = Just i, for some 1i:

Since
i (=MaybeI)l e,

we get by definition of (=MaybeI) that
i =I1 e.



Since
sP <1 p, and
i =I1 o,
we get by 2) for some p' that
p ~~i~-» p', and
sP <1 p'.

Since
p ~~i-» p', and
i = Just i,

we get by definition of (Maybe-In) that
(maybe p) ~~i~~» (maybe p').

Set

pM' = (maybe p').
Then

(maybe p) ~~i~» pM'.

Since
(maybe sP) --s--p,
sP <1 p',

pM' = (maybe p'),
(maybe p) ~~i~» pM', and
i (=MaybeI)l e,
we get
(s,pM') € R.

case 3)

Pick
(?i.s, (maybe p)) e R

To show:

forall
i' (=MaybeI)l 1,

it holds that, for some pM',
(maybe p) ~~i'~~» pM' and
(s,pM') e R.

Since
(?i.s, (maybe p)) e R,

we get
(maybe sP) --(?1i.s)--» and
sP <1 p.

Pick
i' (=MaybeI)l 1.

Case on (i,i').
Case 1 = Nothing, 1i' = Nothing:

Since
(maybe sP) --?i.s--», and
i = Nothing,

we get by definition of (Maybe-Ine) that
(maybe sP) ~~i~~» (maybe sP).

Since
(maybe sP) ~~i~~» (maybe sP), and
(maybe sP) --?i.s--»,

we get
(maybe sP) --s--p.

Since



i' = Nothing,
we get by definition of (Maybe-Ine) that
(maybe sP) ~~i'~~» (maybe sP).

Let

pM' = (maybe p).
Since

(maybe sP) ~~i'~~» (maybe sP)
we get

(maybe sP) ~~i'~~» pM'.

Since
(maybe sP) --s--»,
sP <1 p,

pM' = (maybe p),
(maybe sP) ~~i'~~» pM', and
i' (=MaybeI)l 1,

we get
(s,pM') € R.
Case 1 = Nothing, i' = Just i':
Since

(maybe sP) --?i.s--», and
i = Nothing,

we get by definition of (Maybe-Ine) that
(maybe sP) ~~i~~p (maybe sP).

Since
(maybe sP) ~~i~~» (maybe sP), and
(maybe sP) --?i.s--»,

we get
(maybe sP) --s--p.

By definition of (=MaybeI), we have
Nothing (=MaybeI)l e.

Since
i' (=MaybeI)l 1,
i = Nothing, and
Nothing (=MaybeI)l e,
we get by transitivity that
i' (=MaybeI)l e.

Since
i' (=MaybeI)l e, and
i' = Just 1i'
we get by definition of (=MaybeI) that
i' =I1 e.
Since
sP <1 p, and
i' =I1 o,

we get by 2) for some p' that
p~~i'-» p', and

sP <1 p'.

Since
p~~i'-» p', and
i' = Just 1i',

we get by definition of (Maybe-In) that
(maybe p) ~~i'~~» (maybe p').

Set
pM' = (maybe p').
Then



(maybe p) ~~i'~» pM'.

Since
(maybe sP) --s--»,
sP <1 p',

pM' = (maybe p'),
(maybe p) ~~i'~» pM', and
i' (=MaybeI)l 1,

we get
(s,pM') € R.
Case 1 = Just i, 1' = Nothing:
Since

(maybe sP) --?i.s--»,
we get by definition of (Maybe-In) that,
for some sP',

sP = ?i.sP', and

(maybe sP') --s--p.

By definition of (=MaybeI), we have
Nothing (=MaybeI)l e.

Since
i' (=MaybeI)l 1,
i' = Nothing, and

Nothing (=MaybeI)l e,
we get by transitivity that
i (=MaybeI)l e.

Since
i (=MaybeI)l e,

we get by definition of (=MaybeI) that
i =I1 e.

Since
sP <1 p,
sP = ?i.sP', and
i =I1 e,

we get by 1) that
sP' <1 p.

Since
i' = Nothing,

we get by rule (Maybe-Ine) that
(maybe p) ~~i'~~» (maybe p).

Let
pM' = (maybe p).

Since
(maybe p) ~~i'~~p» (maybe p), and
pM' = (maybe p),

we get
(maybe p) ~~i'~~» pM'.

Since
(maybe sP') --s--» and
sP' <1 p,
pM' = (maybe p),
(maybe p) ~~i'~~» pM', and
i' (=MaybeI)l 1,
we get
(s,pM') € R.

Case i = Just i, 1i' = Just i':



Since

(maybe sP) --?i.s--», and

i = Just i,
we get by definition of (Maybe-In) that,
for some sP',

sP = ?i.sP', and

(maybe sP') --s--».

Since
i = Just i,
i' = Just i', and

i' (=MaybeI)l i,
we get by definition of (=MaybeI) that
i=I14i"'.

Since
sP <1 p,
sP = ?i.sP', and
i' =11 i,
we get by 3) that, for some p',
p~~i'~~-» p', and

sP' <1 p'.

Since
p~~i'~-» p', and
i' = Just 1i',

we get by definition of (Maybe-In) that
(maybe p) ~~i'~~» (maybe p').

Let
pM' = (maybe p').

Since
(maybe p) ~~i'~~» (maybe p'), and
pM' = (maybe p'),

we get
(maybe p) ~~i'~~» pM'.

Since
(maybe sP') --s--» and
sP' <1 p',
pM' = (maybe p'),
(maybe p) ~~i'~~» pM', and
i' (=MaybeI)l 1,
we get
(s,pM') € R.

case 4):

Pick
(lo.s, (maybe p)) e R

To show:

there exists
o' =01

such that
(maybe p) —o'—» pM' and
(s,pM') e R.

Since
(lo.s', (maybe p)) € R,

we get
(maybe sP) --('o.s')--» and
sP <1 p.



Since
(maybe sP) --(!o.s')--»,
we get for some sP' that
sP = lo.sP' and
(maybe sP') --s--p.

Since
sP <1 p,
we get by 4) for some o' and p' that
o' =01 o,
p—o'—» p', and
sP' <1 p'.

Since
p—o'» p',

we get by definition of (Maybe-Out) that
(maybe p) —o'—» (maybe p').

Set

pM' = (maybe p').
Since

(maybe p) —o'—» (maybe p'),
we get

(maybe p) —o'—» pM'.

Since
(maybe sP') --s'-p,
sP' <1 p',
pM' = (maybe p'),
(maybe p) —o'—» pM', and
o' =01 o,
we get
(s,pM') € R.

Thus,
R is a 1-(=MaybeI)-(=0)-simulation.

Thus,
for all 1,

there exists an 1l-(=MaybeI)-(=0)-simulation R such that
(s0,maybe p0) e R.

Thus
(maybe p0) e NI(=MaybeI,=0).

Theorem:

forall

p e IProc ITI,
(=1),

if
p € NI(=I,=I) ,
then

(loop p) e NI(=I,=I).



Proof.
Pick po, (=I) satisfying the above assumptions.

Pick s© such that
(loop pO) --s50-p.

Pick 1.

* k%

To show: there exists a relation R such that
(s0,lo0p pO) € R
and
R is a 1-(=I)-(=I)-simulation.
Pick
R = { (s,loop p) | exists sP . sP <1 p AND (loop sP) --s-» }.

(here, < is a shorthand for <(=I)(=I) )

* k%

To prove:
(s0,loop poO) e R.

Set
s = s0,
p = po,
and construct
sP
such that

(loop sP) --s--»
from the proof of the derivation of
(loop pO) --s0--».

Then
(s,loop p) € R.

Thus,
(s0,loop poO) e R.

* k%

To prove:
R is a 1-(=I)-(=I)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1)

Pick

(?i.s, (loop p)) € R
such that

i =I1 e.

To show:
(s, (loop p)) e R.

Since
(s, (loop p)) e R,

we get for some sP that
(loop sP) --?i.s--p and
sP <1 p.



Since

(loop sP) --?i.s--»,
we get by definition of (Loop-In) that,
for some sP',

sP = ?i.sP', and

(loop sP') --s--».

Since
sP <1 p,
sP = ?i.sP', and
i =I1 e,

we get by 1) that
sP' <1 p.

Since
(loop sP') --s--» and
sP' <1 p,

we get
(s, (loop p)) e R.

case 2)

Pick
(s, (loop p)) € R.

To show:

forall
i =I1 e,

it holds that, for some pL',
(loop p) ~~i~-» pL' and
(s,pL') e R.

Since
(s, (loop p)) e R,

we get
(loop sP) --s--» and
sP <1 p.

Pick
i =I1 e.

Since
sP <1 p,

we get by 2) for some p' that
p ~~i~» p', and
sP <1 p'.

Set
pL" = (loop p').

Since
(loop sP) --s--» and
sP <1 p',

we get
(s,pL') € R.

case 3)

Pick
(?i.s',(loop p)) € R
To show:

forall
i' =I1 i,



it holds that, for some pL',
(loop p) ~~i'~» pL' and
(s',pL') e R.

Since
(?i.s',(loop p)) € R,

we get
(loop sP) --(?i.s')--» and
sP <1 p.

Since
(loop sP) --(?i.s')--»,
we get for some sP' that
sP = ?i.sP' and
(loop sP') --s'--p.

Pick

i' =I1 i.
Since

sP <1 p,

we get by 3) for some p' that
p~~i'-» p', and

sP' <1 p'.
Set
pL' = (loop p').
Since
(loop sP') --s'--» and
sP' <1 p',
we get

(s',pL') e R.
case 4):

Pick
(ti.s', (loop p)) € R

To show:

there exists
it =11 i

such that
(loop p) —i'—» pL' and
(s',pL') e R.

Since
(1i.s', (loop p)) € R,

we get
(loop sP) --(!i.s'")-» and
sP <1 p.

Since

(loop sP) --(!i.s')-»,
we get for some sP' that

sP = 1i.?i.sP' and

(loop sP') --s'-».

Since
sP <1 p,
we get by 4) for some i' and p' that
i' =I1 i,
p—i'-» p', and
?i.sP' <1 p'.



Since
?i.sP' <1 p' and
i' =I1 i,
we get by 3) for some p'' that
p~~i'-» p'', and
sP' <1 p''".

Set
pL' = (loop p'").

Since
(loop sP') --s'-» and
sP' <1 p'',

we get

(s',pL') e R.

Thus,

R is a 1-(=I)-(=I)-simulation.
Thus,
for all 1,

there exists an 1-(=I)-(=I)-simulation R such that
(s@,loop pO) € R.

Thus
(loop pO®) e NI(=I, =I).

Qed.

Theorem:
forall
pL : IProc I OL ,
PR : IProc I OR ,
(1), (=0L), (=0R),
if
pL e NI(=I,=0L) ,
PR e NI(=I,=OR) ,
then
(par pL pR) e NI(=I,=0),
where
(=0) = egpaireLR(=0L,=0R).
Proof.
Pick pL®, pRO, (=I), (=0L), (=O0R) satisfying the above assumptions.

Set
(=0) = egpaireLR(=0L,=0R).

Pick s® such that
par pL® pRO --s0-p».

Pick 1.

* % %



To show: there exists a relation R such that
(s@,par pL® pRO) € R
and
R is a 1-(=I)-(=0)-simulation.
Pick
R = { (s,par pL pR) | exists sPL, sPR .
sL <1 pL,
sR <1 pR, and
(par sL sR) --s--p» }.

(here, < is a shorthand for <(=I)(=0L) and <(=I)(=OR) respectively )

* k%

To prove:
(s@,par pL® pRO) € R.

Set
s = s0,
pL = pLe®,
PR = pRO,
and construct
sL, SR
such that

(par sL sR) --s--»
from the proof of the derivation of
(par pLO pRO) --s0--».

Then
(s,par pL pR}) e R.

Thus,
(s0, par pLO® pRO) e R.

* k%

To prove:
R is a 1-(=I)-(=0)-simulation.

We prove that
R satisfies pt. 1) through 4) of Def IV.2.

case 1)

Pick

(?i.s, (par pL pR)) € R
such that

i =I1 e,

To show:
(s, (par pL pR)) € R.

Since
(?i.s, (par pL pR)) € R,
we get
(par sL sR) --?i.s--»,
sL <1 pL, and
SR <1 pR.

Since

(par sL sR) --?i.s--»,
we get by definition of (Par-In) that,
for some sL' and sR',



sL ?i.sL',
SR ?i.sR', and
(par sL' sR') --s--p.

Since
sL <1 pL,

we get by Def IV.2 1) that
sL' <1 pL.

Since
SR <1 pR,

we get by Dev IV.2 1) that
sR' <1 pR.

Since

(par sL' sR') --s--p.
sL' <1 pL, and
sR' <1 pR,
we get
(s, (par pL pR)) e R.

case 2)

Pick
(s, (par pL pR)) e R

To show:

forall
i =Yl e,

it holds that, for some pP',
(par pL pR) ~~i~» pP' and
(s,pP') € R.

Since
(s, (par pL pR)) e R,
we get
(par sL sR) --s--»,
sL <1 pL, and
sR <1 pR.

Pick
i =I1 e.

Since
sL <1 pL,

we get by Def IV.2 2) for some pL' that
pL ~~i~» pL', and
sL <1 pL'.

Since
sR <1 pR,

we get by 2) for some pR' that
pR ~~i~» pR', and
sR <1 pR'.

Set
pP' = (par pL' pR').

By (PAR-IN),
(par pL pR) ~~i~» pP'.

Since
(par sL sR) --s--»,
sL <1 pL', and
sR <1 pR',



we get
(s,pP') € R.

case 3)

Pick
(?i.s', (par pL pR)) € R

To show:

forall
i' =yl i,

it holds that, for some pP',
(par pL pR) ~~i'~» pP' and
(s',pP') e R.

Since
(?i.s',(par pL pR)) € R,
we get
(par sL sR) --(?i.s')--»,
sL <1 pL, and
sR <1 pR.

Since
(par sL sR) --(?1.s')--»,
we get for some sL' and sR' that
sL = ?i.sL',
sR = ?i.sR', and
(par sL' sR'") --s'--p.

Pick

i' =I1 1i.
Since

sL <1 pL,

we get by Def IV.2 3) for some pL' that
pL ~~i'~-» pL', and

sL' <1 pL'.
Since
SR <1 pR,

we get by Def IV.2 3) for some pR' that
pR ~~i'~-» pR', and
sR' <1 pR'.

Set
pP' = (par pL' pR').

By (PAR-IN),
(par pL pR) ~~i~» pP'.

Since
(par sL' sR') --s'--»,
sL' <1 pL', and
sR' <1 pR',
we get
(s',pZ') e R.

case 4):

Pick
(lo.s',(par pL pR)) € R
To show:

there exists
o' =01 o



such that, for some pP',
(par pL pR) —o'—» pP' and
(s',pP') e R.

Since
(lo.s',(par pL pR)) € R,
we get
par sL sR --(!o.s')--»,
sL <1 pL, and
sR <1 pR.

Let
{(oL,0R) = 0.

Since
(par sL sR) --('o.s')--» and
(oL,0R}) = o,

we get for some sL' and sR' that
sL = loL.sL',
SR = !oR.sR' and
(par sL' sR') --s'--p.

Since
sL <1 pL,

we get by Def IV.2 4) for some oL' and pL' that
oL"' =0L1 oL,
pL —oL'—» pL', and

sL' <1 pL'.
Since
SR <1 pR,

we get by Def IV.2 4) for some oR' and pR' that
OR' =0OR1l OR,
pR —oR'—» pR', and
sR' <1 pR'.

Let
o' = (oL',0R").

Since
oL =0L1 oL' and
OR =0R1 oOR',

we get by definition of eqpair that
o' =01 o.

Set
pP' = (par pL' pR'").

By (PAR-OUT),
(par pL pR) —o—» pP'.

Since
(par sL' sR') --s'--p,
sL' <1 pL', and
sR' <1 pR',
we get
(s',pP') e R.

Thus

R is a 1-(=I)-(=0)-simulation.
Thus,
for all 1,

there exists an 1-(=I)-(=0)-simulation R such that
(sO,par pL® pRO) € R.



Thus
(par pLO® pR®) e NI(=I,=0).

Qed.



