
Type Systems for Information Flow Control: The Question of
Granularity

Vineet Rajani
MPI-SWS

Iulia Bastys
MPI-SWS

Willard Rafnsson
MPI-SWS

Deepak Garg
MPI-SWS

Information flow control is central to computer security. The objective of information flow control is to pre-
vent unauthorized flows of secret information to the public outputs of a computation. This task is often
accomplished using type systems that rely on modal operators to label and track information and, hence,
this style of enforcing information flow control is deeply ingrained in logic. One key choice in designing a
type system for information flow control, or dependence analysis in general, is the granularity at which
dependencies are tracked. This article considers two extreme design points in this vast design space and
examines their relative expressiveness.

1. INTRODUCTION
Information flow control (IFC) is a basic building block of computer security.
IFC prevents the flow of high-confidentiality (or, simply, high) information to low-
confidentiality (low) outputs that may be visible to attackers. For instance, one would
not want private data stored on a file server to flow unencrypted to network packets
since such packets can be read by all machines connected to the network, even those
that are untrusted. Here, the private data is the high information and all unencrypted
network packets are low outputs.

Ideally, IFC demands semantic independence of low outputs from high inputs. This
is often called noninterference [Goguen and Meseguer 1982]: low outputs of a program
should not be affected by changes to the program’s high inputs. In practice, this ideal
property is too restrictive but it is useful in designing enforcement techniques, which
often start by aiming for noninterference, and then relax the property by allowing
declassification in various ways [Sabelfeld and Sands 2009].

Although IFC can be enforced through several techniques—OS kernel mediation
of process I/O [Elnikety et al. 2016; Krohn et al. 2007; Zeldovich et al. 2006], static
analysis and type systems [Barthe et al. 2011; Myers 1999; Pottier and Simonet 2003;
Buiras et al. 2015; Hunt and Sands 2006; Abadi et al. 1999], language runtime modifi-
cation [Austin and Flanagan 2009; Hedin and Sabelfeld 2012; Rajani et al. 2015], the
use of dedicated libraries [Li and Zdancewic 2006; Russo et al. 2008; Stefan et al. 2011],
or compilation [Chudnov and Naumann 2015; Fournet et al. 2009]—our focus in this
article is the enforcement of IFC in higher-order languages using type systems. Build-
ing on the seminal work of Volpano, Smith and Irvine [Volpano et al. 1996], which was
not in a higher-order setting, many type systems have been proposed to enforce IFC in
many different languages, including higher-order ones [Abadi et al. 1999; Pottier and
Simonet 2003; Buiras et al. 2015].

The common denominator of all these type systems is type annotations or labels to
mark program inputs, outputs and intermediate values as high or low, and a mech-
anism to track dependencies between program values, including inputs and outputs,

ACM SIGLOG News 6 January 2017, Vol. 4, No. 1

within the type system. However, there is significant variance in how the type sys-
tems track dependencies. Broadly speaking, dependencies may be tracked at coarse-
granularity or at fine-granularity.

In coarse-grained dependence analysis, the type system forces any output tempo-
rally after the analysis (elimination) of a high-labeled value to be labeled high, since
there could potentially be a dependence from the analyzed value to the output. Obvi-
ously, this introduces a coarse approximation, since not all outputs after the analysis
of a high value may actually depend on the analyzed value. In information flow termi-
nology, this unnecessary forcing of labels to high is called a label creep. To prevent label
creep, the language may provide a scoping mechanism that syntactically delimits the
effect of the analysis of a value. Despite the problem of label creep, the main advantage
of coarse-grained dependence analysis is that it significantly reduces the need to label
intermediate values since, by design, their labels are known implicitly from the labels
of values analyzed in the past.

In contrast to coarse-grained dependence analysis, fine-grained analysis requires an-
notating (or inferring) the label of every intermediate value, and then carefully tracks
dependencies among values. This makes the type system more precise but increases
the annotation burden for either the programmer or a type-label inference engine.

The goal of this article is to provide an introduction to coarse- and fine-grained de-
pendence analysis for IFC and to comment on their relative expressiveness. Specifi-
cally, we describe one type system each for coarse- and fine-grained dependence anal-
ysis. For coarse-grained dependence analysis, we choose a type system that tracks
dependencies using a construct similar to an indexed family of monads. This type sys-
tem is a simplification of an existing hybrid (mixed static and dynamic) system for
dependence analysis called HLIO [Buiras et al. 2015]. We call this type system CG
(for coarse-grained). For fine-grained dependence analysis, we choose a slight variant
of Flow Caml [Pottier and Simonet 2003], an extension of ML’s type system with in-
formation flow types. We call this type system FG (for fine-grained). In both cases, our
setting is a simply-typed call-by-value lambda-calculus with references. To keep the
presentation simple, we do not delve into concurrency or other evaluation strategies
like call-by-name, which have nontrivial implications for dependence analysis and IFC.

Having presented the two type systems, we examine their relative expressiveness
through translations. Specifically, we show that programs typable in CG can be trans-
lated in a type-preserving manner to FG. Although this may be unsurprising given the
description of coarse- and fine-grained analysis above, the translation shows how the
dependence analysis in CG can be simulated using specific monads in FG. We then
attempt a translation from FG to CG, relying on a scope restriction construct in CG to
prevent label creep. While we fail to do this (we explain why), we show that a fragment
of FG can be translated, type-preserving, to CG.1

It is not our goal to provide a comprehensive survey of all existing work on type
systems for IFC. Indeed, this area is vast. Instead, we focus on one dimension of the
design space—the granularity of the dependence analysis.

2. TYPE SYSTEMS FOR INFORMATION-FLOW CONTROL
We first present two state-of-the-art information-flow security type systems, FG and
CG, for higher-order, stateful functional programming languages. The two type sys-
tems differ substantially in the approaches they follow to track dependencies. This is
a consequence of how FG and CG differ computationally: FG allows (side-) effects in
all expressions, à la ML. Since effects can occur so freely, information flows must be

1Due to lack of space, we omit some details of the translations, which are provided in an accompanying
technical report [Rajani et al. 2016].

ACM SIGLOG News 7 January 2017, Vol. 4, No. 1

tracked pervasively. Hence, FG is fine-grained. In contrast, CG isolates effects to a
monad, à la Haskell. As a result, flows have to be tracked only at the granularity of
the monad, but not within pure expressions. This makes CG coarse-grained.

Both FG and CG use labels drawn from a lattice (L,v) of confidentiality levels l .
Labels higher in the lattice represent higher confidentiality. The goal of dependence
analysis for information flow is to ensure that terms labeled l can depend only on terms
labeled l or lower. In examples, we often use the two-point lattice, LH = ({L, H},v),
which contains two levels L (low) and H (high) with L v H and H 6v L. We use ? and
> to denote the least and the greatest elements of any lattice. In LH, ? = L and > = H.

2.1. Fine-grained type system
The fine-grained type system we consider, FG, is shown in Figure 1. FG is a slight
modification of Flow Caml [Pottier and Simonet 2003], an extension of ML’s type sys-
tem for information flow control. Computationally, FG is the call-by-value simply-typed
lambda calculus, extended with products, sums, references, label polymorphism, and
ordering constraints on labels.

Since side-effects may appear in any sub-expression in this language, FG must,
when analyzing sub-expressions, account for all information that data concerning the
sub-expression can contain. To this end, FG labels all of the (otherwise standard) types
for this language with a structural label `, reflecting an upper bound on the informa-
tion conveyed by observing the structure of the expression. For instance, say bool is one
of the base types that the symbol b in Figure 1 ranges over. Then observing a value of
type boolH may reveal H information.

When analyzing non-ground expressions, FG tracks the propagation of information
through the evaluation of expressions. For instance, FG concludes that the conjunction
of a boolH and a boolL value is a boolH value, as observing the result may convey
information about each component in the conjunction.

This tracking alone, however, is insufficient; since (sub)expressions can be evalu-
ated conditionally, observing the presence or absence of effects can convey informa-
tion about the control-flow conditions that facilitated or prevented the effects. Struc-
tural labels do not account for this information. For instance, let xC : (unitL + unitL)H ,
x : (ref natL)L, and consider e = case(xC, _.(), _.x := 42).2 The result of evaluating e is
invariably (), so no information is conveyed by observing the result. However, on eval-
uation, e reveals whether xC = inl(()) or x = inr(()) through the absence or presence
of the write to x. FG tracks this information by recording control flow information in
a control label pc (aka program counter), making it a lower bound on the write effects
that the (sub)expression being typed can perform. For instance, when attempting to
type the previous example, FG raises the pc by the information in the control-flow con-
dition x, which is H, and checks whether the branches only have write effects at or
above this new pc. However, the right branch writes 42 to x, which stores L-labeled
natural numbers. So, with these labels on the types of x and xC, e does not type-check.

Effects in a function’s body are suspended until the function is applied. Fur-
ther, since our language is higher-order, a function can take another function
as a parameter and apply it. This necessitates additional type annotations on
function types. For instance, let xC : (unitL + unitL)H and x : (ref natL)L. Consider
e = �xF.case(xC, _. (), _. (xF ())). Assuming that xF maps unitL to unitL, e maps such map-
pings to unitH , possibly applying xF in the process. Now consider e0 = �_. (x := 42), a
function with a suspended effect, which maps unitL to unitL. While e e0 always returns
a result of type unitH , e e0 conditionally applies e0, and thus, the L effect in e0 leaks the

2We use the symbol _ to denote a variable, label or type whose actual value is irrelevant. Here, _ denotes
anonymous variables. Later, we use _ to denote labels and types that are irrelevant to the discussion.

ACM SIGLOG News 8 January 2017, Vol. 4, No. 1

Syntax, types, constraints:
Expressions e ::= x | �x.e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) |

case(e, x.e, x.e) | new e | !e | e := e | () | ⇤e | e [] | ⌫ e | e •
Labels `, pc ::= l | ↵ | ` t ` | ` u `
Types ⌧ ::= A`

Base types A ::= b | ⌧ `e! ⌧ | ⌧ ⇥ ⌧ | ⌧ + ⌧ | ref ⌧ | unit | 8↵.(`e, ⌧) | c
`e) ⌧

Constraints c ::= ` v ` | (c, c)

Type system: ⌃; ;� `pc e : ⌧

⌃; ;�, x : ⌧ `pc x : ⌧
FG-var

⌃; ;�, x : ⌧1 ``e e : ⌧2

⌃; ;� `pc �x.e : (⌧1
`e! ⌧2)

?
FG-lam

⌃; ;� `pc e1 : (⌧1
`e! ⌧2)

` ⌃; ;� `pc e2 : ⌧1 ⌃; ` ⌧2 & ` ⌃; ` pc t ` v `e

⌃; ;� `pc e1 e2 : ⌧2
FG-app

⌃; ;� `pc e1 : ⌧1 ⌃; ;� `pc e2 : ⌧2

⌃; ;� `pc (e1, e2) : (⌧1 ⇥ ⌧2)
? FG-prod

⌃; ;� `pc e : (⌧1 ⇥ ⌧2)
` ⌃; ` ⌧1 & `

⌃; ;� `pc fst(e) : ⌧1
FG-fst

⌃; ;� `pc e : ⌧1

⌃; ;� `pc inl(e) : (⌧1 + ⌧2)
? FG-inl

⌃; ;� `pc e : (⌧1 + ⌧2)
`

⌃; ;�, x : ⌧1 `pct` e1 : ⌧ ⌃; ;�, y : ⌧2 `pct` e2 : ⌧ ⌃; ` ⌧ & `

⌃; ;� `pc case(e, x.e1, y.e2) : ⌧
FG-case

⌃; ;� `pc0 e : ⌧ 0 ⌃; ` pc v pc0 ⌃; ` ⌧ 0 <: ⌧

⌃; ;� `pc e : ⌧
FG-sub

⌃; ;� `pc e : ⌧ ⌃; ` ⌧ & pc

⌃; ;� `pc new e : (ref ⌧)?
FG-ref

⌃; ;� `pc e : (ref ⌧)` ⌃; ` ⌧ & `

⌃; ;� `pc !e : ⌧
FG-deref

⌃; ;� `pc e1 : (ref ⌧)` ⌃; ;� `pc e2 : ⌧ ⌃; ` ⌧ & (pc t `)

⌃; ;� `pc e1 := e2 : unit
FG-assign

⌃,↵; ;� `` e : ⌧

⌃; ;� `pc ⇤e : (8↵.(`, ⌧))?
FG-FI

⌃; , c;� `` e : ⌧

⌃; ;� `pc ⌫ e : (c
`) ⌧)?

FG-CI

⌃; ;� `pc e : (8↵.(`, ⌧))`
0

`00 2 ⌃ [L ⌃; ` pc t `0 v ` ⌃; ` ⌧ & `0

⌃; ;� `pc e [] : ⌧ [`00/↵]
FG-FE

⌃; ;� `pc e : (c
`) ⌧)`

0
⌃; ` c ⌃; ` pc t `0 v ` ⌃; ` ⌧ & `0

⌃; ;� `pc e • : ⌧
FG-CE

Fig. 1. Syntax and type system of FG.

ACM SIGLOG News 9 January 2017, Vol. 4, No. 1

⌃; ` ` v `0

⌃; ` b` <: b`
0 FGsub-base

⌃; ` ` v `0

⌃; ` (ref ⌧)` <: (ref ⌧)`
0 FGsub-ref

⌃; ` ⌧1 <: ⌧ 01 ⌃; ` ⌧2 <: ⌧ 02 ⌃; ` ` v `0

⌃; ` (⌧1 ⇥ ⌧2)
` <: (⌧ 01 ⇥ ⌧ 02)

`0
FGsub-prod

⌃; ` ⌧1 <: ⌧ 01 ⌃; ` ⌧2 <: ⌧ 02 ⌃; ` ` v `0

⌃; ` (⌧1 + ⌧2)
` <: (⌧ 01 + ⌧ 02)

`0
FGsub-sum

⌃; ` ⌧ 01 <: ⌧1 ⌃; ` ⌧2 <: ⌧ 02 ⌃; ` ` v `0 ⌃; ` `0e v `e

⌃; ` (⌧1
`e! ⌧2)

` <: (⌧ 01
`0e! ⌧ 02)

`0
FGsub-arrow

⌃,↵; ` ⌧1 <: ⌧2 ⌃; ` ` v `0 ⌃; ` `2 v `1

⌃; ` (8↵.(`1, ⌧1))
` <: (8↵.(`2, ⌧2))

`0
FGsub-forall

⌃; ` c2 =) c1 ⌃; ` ⌧1 <: ⌧2 ⌃; ` ` v `0 ⌃; ` `2 v `1

⌃; ` (c1
`1) ⌧1)

` <: (c2
`2) ⌧2)

`0
FGsub-constraint

Fig. 2. FG subtyping.

control condition (xC) in e, which is H. FG resolves this by having function types carry a
separate control label; in ⌧

`e!⌧ 0, `e is a lower bound on the level of the write effects that
can occur when a function of this type is applied. In the example, e0 : (unitL

L! unitL)L;
thus FG rejects e e0 since e applies a function with L effects in a H context. Finally,
note that functions of type (⌧

L! ⌧ 0)H can be constructed but not applied in FG. This
is because such a function can leak its identity, which is labeled H, to L when it is
applied. However, if the function is merely passed around, it cannot leak information.

For the same reason, the types 8↵.(`e, ⌧) and c
`e) ⌧ also carry the control label `e. In

FG, values of these types (⇤e and ⌫ e, respectively) are also suspended computations.
However, the decision to suspend the computations inside these values is not funda-
mental since neither labels nor constraints have a runtime representation in FG.

FG performs security checks by checking the satisfiability of flow constraints, using
the judgment ⌃, ` c. A constraint c is a conjunction of terms of the form ` v `0, where
` ranges over levels, label-variables, and lattice operations on these. Let range over
sets of constraints, and ⌃ range over sets of label parameters ↵. The judgment ⌃, ` c
checks whether, for all instantiations of ⌃, assuming , c holds. Label ` covers type A`0

(from below), written ⌃, ` A`0 & `, iff ⌃, ` ` v `0.

Subtyping. FG uses subtyping to allow upwards-flows of information. Subtyping
amounts to weakening a guarantee for an expression. In our case, this guarantee is the
type of an expression, which specifies how the information is classified. The subtyping
judgment, defined in Figure 2, has the form ⌃; ` ⌧ <: ⌧ 0. In effect, this judgment
extends (v) to labeled expression types. For any A`, <: is covariant in `. This weak-
ening of the type amounts to up-classifying information, which is safe since it only
labels less confidential information as more confidential. Subtyping is covariant ev-
erywhere else, with two exceptions: control labels, and function arguments. A control
label guarantees a lower bound on effects. This guarantee is weakened if the control
label is lowered. For instance, if an expression has type (natH

H! unitH)L, the function

ACM SIGLOG News 10 January 2017, Vol. 4, No. 1

may produce effects at or above H. This implies the weaker statement that the func-
tion may produce effects at or above L. Hence (natH

H! unitH)L <: (natH
L! unitH)L. A

function argument appears as an assumption in the function type, and strengthening
an assumption amounts to weakening the guarantee. For instance, if an expression
has type (natH

H! unitH)L, the function does not leak despite receiving H input. The
function still will not leak if given L input. Hence, (natH

H! unitH)L <: (natL
H! unitH)L.

Typing judgment and typing rules. FG’s type system prevents illicit flows of infor-
mation by ensuring that

— eliminating an expression labeled ` produces a result covered by `.
— an expression executing under pc can only cause write effects at or above pc.

The typing judgment has the form ⌃; ;� `pc e : ⌧ . It reads: for all ⌃, assuming
and �, e has type ⌧ , and pc is a lower bound on the level of all write effects which can
occur when e is evaluated. We focus on three constructs, since these involve the pc:
case, abstraction, and references.

In the rule FG-case, since case deconstructs its sum, the results of the branches
must be covered by the label on the sum. Also, since either one or the other branch is
evaluated depending on the sum, in typing the branches, the pc label is raised by the
label on the sum, thus ensuring that the branches do not have write effects below the
label of the sum.

In the rule FG-lam, FG can disregard the pc when typing the body of the function,
because the body will not be evaluated immediately. FG thus only needs to check that
the function satisfies what the type (⌧1

`e! ⌧2)
? says it satisfies: (1) that the body has

type ⌧2 given input of type ⌧1, and (2) that all of its effects are at or above `e, which is
ensured by checking the body of the function with pc set to `e. The outermost label on
the conclusion’s type ⌧1

`e! ⌧2 is ? because the fact that the function is constructed at
this point in the program reveals no information. In fact, the outermost label is ? in
the introduction rules of all types, not just ⌧1

`e! ⌧2. Rule FG-app checks that the result
of applying a function is covered by the label on the function type, and that the effect of
running the function does not leak contextual information, or structural information
about the function.

In rules FG-ref and FG-assign, pc must cover the type of the value written to the ref-
erence. This ensures that write effects of the expression being typed are lower-bounded
by pc. Additionally, in FG-assign, the label of the value written must cover the label
on the reference to prevent leaking which reference was written. In the rule FG-deref,
reading a reference conveys information about which reference was read; the result of
the read must thus be covered by the label on the reference. (We implicitly assume that
in the type ref ⌧ , the type ⌧ is closed, i.e., it has no free label parameters. Not enforcing
this can break both subject reduction and the following noninterference property.)

Noninterference. FG enforces noninterference: The result of evaluating an expres-
sion of a labeled base type cannot depend on an input whose label does not cover the
label of the base type.

Theorem 2.1. [Noninterference for FG] Suppose (1) `i 6v `, (2) x : A`i `pc e : b`, and (3)
v1, v2 : A`i . If both e[v1/x] and e[v2/x] terminate, then they produce the same value (of
type b).

2.2. Coarse-grained type system
Next, we describe CG, a type system for coarse-grained dependence analysis. CG is
not a new type system: It is the static fragment of HLIO [Buiras et al. 2015], a hy-
brid type system that mixes static and dynamic analyses to track flows. One minor

ACM SIGLOG News 11 January 2017, Vol. 4, No. 1

Syntax, types, constraints:
Expressions e ::= x | �x.e | e e | (e, e) | fst(e) | snd(e) | inl(e) | inr(e) |

case(e, x.e, y.e) | new e | !e | e := e | () | ⇤e | e [] | ⌫ e |
e • | label`(e) | unlabel(e) | toLabeled(e) | ret(e) | bind(e, x.e)

Labels ` ::= l | ↵ | ` t ` | ` u `
Types ⌧ ::= b | ⌧ ! ⌧ | ⌧ ⇥ ⌧ | ⌧ + ⌧ | ref ` ⌧ | unit | 8↵.⌧ | c) ⌧ |

Labeled ` ⌧ | CG `i `o ⌧
Constraints c ::= ` v ` | (c, c)

Type system: ⌃; ;� ` e : ⌧

(All rules of the simply typed lambda-calculus pertaining to the types b, ⌧ ! ⌧, ⌧ ⇥
⌧, ⌧ + ⌧, unit are included.)

⌃; ;� ` e : ⌧ ⌃; ` `i v `

⌃; ;� ` label`(e) : CG `i `i (Labeled ` ⌧)
CG-label

⌃; ;� ` e : Labeled ` ⌧

⌃; ;� ` unlabel(e) : CG `i (`i t `) ⌧
CG-unlabel

⌃; ;� ` e : CG `i `o ⌧

⌃; ;� ` toLabeled(e) : CG `i `i (Labeled `o ⌧)
CG-toLabeled

⌃; ;� ` e : ⌧

⌃; ;� ` ret(e) : CG `i `i ⌧
CG-ret

⌃; ;� ` e1 : CG `i ` ⌧ ⌃; ;�, x : ⌧ ` e2 : CG ` `o ⌧ 0

⌃; ;� ` bind(e1, x.e2) : CG `i `o ⌧ 0
CG-bind

⌃; ;� ` e : ⌧ 0 ⌃; ` ⌧ 0 <: ⌧

⌃; ;� ` e : ⌧
CG-sub

⌃; ;� ` e : Labeled `0 ⌧ ⌃; ` ` v `0

⌃; ;� ` new e : CG ` ` (ref `0 ⌧)
CG-new

⌃; ;� ` e : ref ` ⌧

⌃; ;� ` !e : CG `0 `0 (Labeled ` ⌧)
CG-deref

⌃; ;� ` e1 : ref `0 ⌧ ⌃; ;� ` e2 : Labeled `0 ⌧ ⌃; ` ` v `0

⌃; ;� ` e1 := e2 : CG ` ` unit
CG-assign

⌃,↵; ;� ` e : ⌧

⌃;� ` ⇤e : 8↵.⌧
CG-FI

⌃; ;� ` e : 8↵.⌧ ` 2 (L [⌃)

⌃; ;� ` e [] : ⌧ [`/↵]
CG-FE

⌃; , c;� ` e : ⌧

⌃;� ` ⌫ e : c) ⌧
CG-CI

⌃; ;� ` e : c) ⌧ ⌃; ` c

⌃; ;� ` e • : ⌧
CG-CE

Fig. 3. Syntax and type system of CG.

ACM SIGLOG News 12 January 2017, Vol. 4, No. 1

difference from HLIO is that CG has call-by-value semantics to match those of FG
whereas HLIO’s semantics are call-by-name. This difference has little consequence for
the discussion here.

CG is designed to minimize type-label annotations. To this end, it isolates all effects
in a monad-like type construct. The syntax and typing rules of CG are shown in Fig-
ure 3. Unlike FG, standard typing constructs like products, arrows and sums are not
refined with labels. These types behave exactly as in the simply typed lambda calcu-
lus (which CG extends conservatively) and the corresponding expressions do not have
side-effects. For labeling, CG has a dedicated type constructor Labeled ` ⌧ , which means
⌧ labeled with `. This is the only way to label a type in CG. Expressions are augmented
with the constructs label`(e) and unlabel(e) to introduce and eliminate Labeled ` ⌧ .

Effects are limited to computations that have the type CG `i `o ⌧ . This type is similar
to a monad and has the usual monadic return and bind constructs. Importantly, the
bind construct is used to track dependencies coarsely. Finally, CG adds a scoping con-
struct toLabeled(e) that limits label creep. References in CG store only labeled values.
A reference of type ref ` ⌧ stores values of type Labeled ` ⌧ .

The type CG `i `o ⌧ . The type CG `i `o ⌧ ascribes (suspended) computations that have
effects. We define two kinds of effects in CG. Input effects cause a computation to learn
new information and happen when a computation unlabels a labeled value. An output
effect causes a computation to release information. This happens when a computation
either creates a labeled value or writes to a reference. (Since references store only
labeled values, merely reading a reference is not an input effect—to learn the actual
content, the program must unlabel the value. Strictly speaking, it is also not essential
to treat writing a reference as an output effect in CG. However, in many practical
scenarios, attackers can observe writes to memory through side-channels outside the
language, so we treat all writes as outputs.)

The type system enforces that the output effects of a computation of type CG `i `o ⌧
are lower-bounded by `i and that its input effects are upper-bounded by `o. We call
`i the “initial” program counter (pc) and `o the “final” pc for the computation. For in-
stance, when writing to a reference, it is checked that the initial pc is below the label
of the written value (last premise of rule CG-assign). A similar check is made when a
labeled value is created (rule CG-label). When a value of type Labeled ` ⌧ is unlabeled,
the final pc of the computation is joined with ` (rule CG-unlabel).

The construct bind(e1, x.e2) allows sequencing two computations of types CG `i ` ⌧
and ⌧ ! CG ` `o ⌧ 0 to obtain a computation of type CG `i `o ⌧ 0. Importantly, the final
pc ` of the first computation must match the initial pc of the second computation. This
ensures that the second computation’s output effects (which are lower-bounded by `)
are at labels higher than the input effects of the first computation (which are upper-
bounded by `) and, hence, prevents any information leak. This is the only mechanism
for tracking dependencies in CG.

It is an invariant of the type system that if e : CG `i `o ⌧ , then `i v `o.

Construct toLabeled(e). As described above, sequencing a second computation after
a computation of type CG `i `o ⌧ using bind requires that the second computation’s
output effects be labeled higher than `o. This causes a label creep when the second
computation does not actually examine the result of the first computation (e.g., the
second computation may write the first computation’s result to memory without ex-
amining it). To work around such a label creep, CG provides the expression construct
toLabeled that coerces the type CG `i `o ⌧ to CG `i `i (Labeled `o ⌧). The computation re-
turned by toLabeled, when forced, forces the original computation and labels the result

ACM SIGLOG News 13 January 2017, Vol. 4, No. 1

⌃; ` ⌧ <: ⌧

⌃; ` ⌧ 01 <: ⌧1 ⌃; ` ⌧2 <: ⌧ 02
⌃; ` ⌧1 ! ⌧2 <: ⌧ 01 ! ⌧ 02

⌃; ` ⌧1 <: ⌧ 01 ⌃; ` ⌧2 <: ⌧ 02
⌃; ` ⌧1 ⇥ ⌧2 <: ⌧ 01 ⇥ ⌧ 02

⌃; ` ⌧1 <: ⌧ 01 ⌃; ` ⌧2 <: ⌧ 02
⌃; ` ⌧1 + ⌧2 <: ⌧ 01 + ⌧ 02

⌃; ` ⌧ <: ⌧ 0 ⌃; ` ` v `0

⌃; ` Labeled ` ⌧ <: Labeled `0 ⌧ 0
⌃; ` ⌧ <: ⌧ 0 ⌃; ` `0i v `i ⌃; ` `o v `0o

⌃; ` CG `i `o ⌧ <: CG `0i `
0
o ⌧ 0

⌃,↵; ` ⌧1 <: ⌧2

⌃; ` 8↵.⌧1 <: 8↵.⌧2

⌃; ` c2 =) c1 ⌧1 <: ⌧2

⌃; ` c1) ⌧1 <: c2) ⌧2

Fig. 4. CG subtyping.

with `o.3 A computation of the type CG `i `i (Labeled `o ⌧) can be followed by a second
computation whose output effects are at level `i or higher. The pc increases to `o only
if the second computation actually unlabels the result of the first computation.

Subtyping. CG includes the usual subtyping rules of the simply typed lambda calcu-
lus. Subtyping for Labeled ` ⌧ is covariant in `. Subtyping for CG `i `o ⌧ is contravariant
in `i and covariant in `o. This is natural since `i is a lower-bound (on the output effects)
and `o is an upper-bound (on the input effects). The subtyping rules of CG are shown
in Figure 4.

Noninterference. CG satisfies noninterference: If a computation has only low input
effects and returns a value of base type, then the returned value must be independent
of any high input.

Theorem 2.2. [Noninterference for CG] Suppose (1) `i 6v `, (2) x : Labeled `i ⌧ ` e :
CG _ ` b, and (3) v1, v2 : Labeled `i ⌧ . If both e[v1/x] and e[v2/x] terminate when forced,
then they produce the same value (of type b).

3. TRANSLATIONS
Having described the fine- and coarse-grained dependence analysis type systems FG
and CG, we now turn to understanding their relative expressiveness. We do so by
presenting (attempted) type-preserving translations from CG to FG, and vice-versa.
We start by showing a type-preserving translation from CG to FG in Section 3.1. We
then attempt a translation in the reverse direction, show where it fails and why (Sec-
tion 3.2). Based on our attempt, we identify a smaller fragment of FG which can be
translated to CG, preserving types.

3.1. Translating CG to FG
In this section, we define a translation J·K from CG to FG and show that it is type-
preserving. The translation of types is shown below.

3The term “forcing” is used here in the sense of monads. Forcing a value of type CG `i `o ⌧ runs the
suspended computation, records its write effects and eventually returns whatever the computation returns.

ACM SIGLOG News 14 January 2017, Vol. 4, No. 1

JbK = b?

J⌧1 ! ⌧2K = (J⌧1K >! J⌧2K)?
J⌧1 ⇥ ⌧2K = (J⌧1K ⇥ J⌧2K)?
J⌧1 + ⌧2K = (J⌧1K + J⌧2K)?

JLabeled ` ⌧K = (J⌧K + unit)`

JunitK = unit?

Jref ` ⌧K = (ref (J⌧K + unit)`)?

JCG `i `o ⌧K = (unit
`i! (J⌧K + unit)`o)?

Jc) ⌧K = (c
>) J⌧K)?

J8↵.⌧K = (8↵.(>, J⌧K))?

This translation relies on three key ideas. First, in CG, labels are limited to the type
construct Labeled ` ⌧ , so the translation of all other types can simply use the outer
label ?. There are several choices for translating Labeled ` ⌧ . A natural translation
would be A`0t`, where A`0 is the translation of ⌧ . However, this translation “flattens”
nested labels of the form Labeled ` (Labeled `0 ⌧), making it impossible to simulate,
in the translation, the selective unlabeling of only the outer `, but not the inner `0,
which is allowed in CG. To keep the labels ` and `0 separate in the translation, we
translate Labeled ` ⌧ to (J⌧K + unit)`, which keeps the label on J⌧K separate from `. The
corresponding translation of expressions uses inl, thus never actually returning the
unit value during execution.

Second, in CG, side-effects are confined to the type CG `i `o ⌧ , so when translating
CG’s remaining types, which represent pure terms, we can always use pc = > in FG
(since there are no side-effects in the pure terms, > is trivially the strictest lower-bound
on the output effects). As a result, the control labels on !,) and 8 in the translations
of ⌧1 ! ⌧2, c) ⌧ and 8↵.⌧ are all >.

The type CG `i `o ⌧ represents a suspended computation whose effects are visible
only after it is forced. This is emulated in FG using a thunk, a function that takes
an argument of unit type. Specifically, CG `i `o ⌧ translates to (unit

`i! (J⌧K + unit)`o)?,
which is a decorated variant of the thunk type unit ! J⌧K. The thunk can be forced
when needed by applying it to (). The `i on the arrow means (in FG) that the write-
effects of the computation (the thunk) are lower-bounded by `i, which is exactly the
meaning of `i in CG `i `o ⌧ . The label `o on (J⌧K + unit) implies that the result of the
computation cannot be analyzed without raising the pc to `o in FG, which is exactly
the consequence of having `o in the type CG `i `o ⌧ in CG. (We note that the translation
simulates CG `i `o ⌧ using a combination of the type forms unit ! J⌧K and J⌧K + unit,
both of which are monads.)

Finally, in CG, a reference of type ref ` ⌧ stores values of type Labeled ` ⌧ . Hence, the
translation of ref ` ⌧ is (ref (J⌧K + unit)`)?.

The translation J·K is lifted pointwise to contexts: J�K , {x : J⌧K | x : ⌧ 2 �}. The
translation of expressions is defined by induction on CG typing derivations. We write
⌃; ;� ` e : ⌧ ; ⌃; ; J�K `> e0 : J⌧K to mean that the well-typed CG expression
e translates to the well-typed FG expression e0. Selected rules of the translation are
shown in Figure 5. They should be unsurprising given the type translation.

The following theorem shows that this translation preserves types, in the sense that
; always maps a valid CG typing derivation to a valid FG typing derivation.

Theorem 3.1 (Soundness, CG ; FG). If ⌃; ;� ` e : ⌧ has a valid CG typing deriva-
tion, then there exists an e0 such that ⌃; ;� ` e : ⌧ ; ⌃; ; J�K `> e0 : J⌧K and
⌃; ; J�K `> e : J⌧K has a valid FG typing derivation.

3.2. Translating FG to CG
Next, we consider translating FG to CG. We start with an incorrect strawman trans-
lation, which we refine, eventually getting to a point where no further progress seems
possible. At that point, we identify a fragment of FG for which the refined translation

ACM SIGLOG News 15 January 2017, Vol. 4, No. 1

⌃; ;� ` e : ⌧ ⌃; ` `i v `

⌃; ;� ` label`(e) : CG `i `i (Labeled ` ⌧)
;

⌃; ; J�K `> e0 : J⌧K
⌃; ; J�K `> �_.inl(inl(e0)) : (unit

`i! ((J⌧K + unit)` + unit)`i)?

⌃; ;� ` e : Labeled ` ⌧

⌃; ;� ` unlabel(e) : CG `i (`i t `) ⌧
;

⌃; ; J�K `> e0 : (J⌧K + unit)`

⌃; ; J�K `> �_.e0 : (unit
`i! (J⌧K + unit)`it`)?

⌃; ;� ` e : CG `i `o ⌧

⌃; ;� ` toLabeled(e) : CG `i `i (Labeled `o ⌧)
;

⌃; ; J�K `> e0 : (unit
`i! (J⌧K + unit)`o)?

⌃; ; J�K `> �_.inl(e0 ()) : (unit
`i! ((J⌧K + unit)`o + unit)`i)?

⌃; ;� ` e : ⌧

⌃; ;� ` ret(e) : CG `i `i ⌧
;

⌃; ; J�K `> e0 : J⌧K
⌃; ; J�K `> �_.inl(e0) : (unit

`i! (J⌧K + unit)`i)?

⌃; ;� ` e1 : CG `i ` ⌧ ⌃; ;�, x : ⌧ ` e2 : CG ` `o ⌧ 0

⌃; ;� ` bind(e1, x.e2) : CG `i `o ⌧ 0
;

⌃; ; J�K `> e01 : (unit
`i! (J⌧K + unit)`)?

⌃; ; J�K , x : J⌧K `> e02 : (unit
`! (J⌧ 0K + unit)`o)?

⌃; ; J�K `> �_.case(e01(), x.e02(), y.inr()) : (unit
`i! (J⌧ 0K + unit)`o)?

Fig. 5. Type derivation-directed expression translation from CG into FG, selected rules.

works. The goal of going through this exercise is to impress upon the reader the diffi-
culty of translating a fine-grained dependence analysis to a coarse-grained one, and to
argue that there does not seem to be a straightforward translation from all of FG to
CG, despite CG having the construct toLabeled to prevent label creep.

Strawman translation. We construct a strawman translation, J·K, from FG to CG
that we soon show to be incorrect. We translate the type A` to Labeled ` JAK since this
is the only type construct that adds a label in CG.

Next, consider the function type ⌧1
`e! ⌧2 in FG. Since the body of a function of this

type can have a write effect at level `e or higher, an intuitive translation of this type
could have the form J⌧1K ! CG `e `o J⌧2K. For the translation of the function’s body to
be well-typed in CG, the label `o must be an upper-bound on the labels of everything
the function’s body analyzes. Nothing in the FG type specifies this upper-bound, so we
must find some other alternative. Fortunately, it is possible to confine the effects of

ACM SIGLOG News 16 January 2017, Vol. 4, No. 1

value analysis using the construct toLabeled in CG. As a result, we may hope that we
can choose `o = `e and translate ⌧1

`e! ⌧2 to J⌧1K ! CG `e `e J⌧2K.
Independent of what `o we choose, this translation has a label creep problem. Con-

sider a FG function f of type unit
H! AL in the lattice LH. This function may write high

values to references but it eventually returns a low value. In FG, the result of f ’s appli-
cation can be written to a reference of type ref AL. However, after translation, this write
would be impossible because f ’s type would translate to JunitK ! CG H H (Labeled L A).
Applying this type would result in a computation, say c, of type CG H H (Labeled L A).
There is no way to extract a low labeled value from this computation. At best, we may
use subtyping, bind and toLabeled as in toLabeled(bind(c, x.unlabel(x))) to coerce the type
to CG L L (Labeled H A), but the resulting value still has the label H.

Based on this, we may be tempted to translate ⌧1
`e! ⌧2 to J⌧1K ! CG ? ? J⌧2K instead

(this is sound because ? is trivially a lower bound on any write effect in the function’s
body). Although this translation would solve the label creep problem mentioned in the
previous paragraph, it suffers from a different problem: Now, the translation cannot
simulate an application of the previous paragraph’s function f in a high context, i.e.,
in a case branch where the analyzed sum is labeled H. To see this, consider the FG
expression case(h, x.f(), ...), where h : (⌧ + ⌧ 0)H . In FG, the type of this expression is
AH . In CG, we would correspondingly like to construct a result of type Labeled H JAK.
However, this is impossible. Since h’s translation has type Labeled H (J⌧K + J⌧ 0K), to
perform a case analysis on it, we must first unlabel it. This will result in a computation
of type CG L H (J⌧K + J⌧ 0K). Next, we can bind this computation and case analyze the
value of type J⌧K + J⌧ 0K. However, due to the restrictions in typing bind, any further
binds we perform must be on values of type CG H H _. The body of f ’s translation has
the type CG L L (Labeled L JAK) (L = ? here) and there is no way to coerce this to the
form CG H H _ because subtyping for CG `i `e ⌧ is contravariant in `i. So, we cannot
bind the body of f , and, hence, cannot obtain a value of type Labeled _ JAK.

Using label polymorphism. The problems with the strawman translation above can
be addressed using label polymorphism. For instance, we could translate ⌧1

`e! ⌧2 to
J⌧1K ! 8↵.CG ↵ ↵ J⌧2K. This would allow us to use the earlier function f in both
contexts, instantiating ↵ with L in the first context and with H in the second context.
However, this translation is unsound. Specifically, instantiating ↵ with some `0e 6v `e

allows us to establish that every write in the function’s body is at the level `0e or higher,
which is clearly false, since the function’s body may write at level `e (according to the
FG type ⌧1

`e! ⌧2).
Consequently, we consider a revised translation that maps ⌧1

`e! ⌧2 to
J⌧1K ! 8↵.(↵ v `e)) CG ↵ ↵ J⌧2K. The entire type translation is shown below. (The
translation of c

`e) ⌧ and 8↵.(`e, ⌧) follows the same intuition as the translation of
⌧1

`e! ⌧2.)

JbK = b
J⌧1 `e! ⌧2K = J⌧1K ! 8↵.(↵ v `e)) CG ↵ ↵ J⌧2K

Jc `e) ⌧K = 8↵.(↵ v `e, c)) CG ↵ ↵ J⌧K
J8↵.(`e, ⌧)K = 8↵.8↵0.(↵0 v `e)) CG ↵0 ↵0 J⌧K

JA`K = Labeled ` JAK

JunitK = unit
J⌧1 ⇥ ⌧2K = J⌧1K ⇥ J⌧2K
J⌧1 + ⌧2K = J⌧1K + J⌧2K
Jref A`K = ref ` JAK

The translation of contexts � is defined pointwise and a FG typ-
ing judgment ⌃; ;� `pc e : ⌧ translates to a CG judgment of the form
⌃; ; J�K ` e0 : 8↵.(↵ v pc)) CG ↵ ↵ J⌧K, mirroring the label polymorphism in the
bodies of function types (e0 is the translation of e).

ACM SIGLOG News 17 January 2017, Vol. 4, No. 1

Unfortunately, this translation has a different problem! Consider how we would (in-
ductively) translate the rule FG-case from Figure 1. Inductively, from the premises we
obtain e0, e01 and e02 (the translations of e, e1 and e2, respectively) such that:

(1) ⌃; ; J�K ` e0 : 8↵.(↵ v pc)) CG ↵ ↵ (Labeled ` (J⌧1K + J⌧2K))
(2) ⌃; ; J�K , x : J⌧1K ` e01 : 8↵1.(↵1 v (pc t `))) CG ↵1 ↵1 J⌧K
(3) ⌃; ; J�K , y : J⌧2K ` e02 : 8↵2.(↵2 v (pc t `))) CG ↵2 ↵2 J⌧K

The goal is to construct a term e00 (the translation of case(e, x.e1, y.e2)) such that

⌃; ; J�K ` e00 : 8↵0.(↵0 v pc)) CG ↵0 ↵0 J⌧K
We try to search for the appropriate term e00 (much as we would look for a proof

in a formal proof system). We pick some ↵0 such that ↵0 v pc. We must con-
struct a term of the type CG ↵0 ↵0 J⌧K. Our only option is to case analyze the
value of type (J⌧1K + J⌧2K) in (1), so we must instantiate the quantified ↵ in (1)
and bind the resulting computation type. Since the eventual goal is to obtain some-
thing of type CG ↵0 _ _, we must pick ↵ = ↵0. We instantiate ↵ = ↵0, and bind
the computation of type CG ↵0 ↵0 (Labeled ` (J⌧1K + J⌧2K)) in (1), obtaining a local vari-
able of type Labeled ` (J⌧1K + J⌧2K). We unlabel this to obtain a computation of type
CG ↵0 (↵0 t `) (J⌧1K + J⌧2K), which we bind again to obtain a variable of type J⌧1K + J⌧2K.
This variable can be case-analyzed. To construct the case branches we must instanti-
ate and bind the computations in (2) and (3). We show only the operations on (2), those
on (3) being similar. First, we must pick a suitable ↵1. Since the next computation we
construct must have a type of the form CG (↵0 t `) _ _, we must pick ↵1 = ↵0 t ` (which
is indeed below (pct `), as required by the constraint in (2)). Second, we instantiate (2)
with this substitution to obtain a computation of type CG (↵0t`) (↵0t`) J⌧K. Repeating
this process on (3), we obtain an end-to-end computation of type CG ↵0 (↵0 t `) J⌧K.

This is almost what we wanted. To complete the proof, we have to coerce the type
CG ↵0 (↵0 t `) J⌧K to the type CG ↵0 ↵0 J⌧K. For this, we consider the cases ↵0 v ` and
↵0 6v ` separately. Strictly speaking, CG does not allow a case analysis on constraints.
However, we show below that the proof cannot even be completed in the second case,
so the case analysis has expository value.

When ↵0 v `, then CG ↵0 (↵0 t `) J⌧K = CG ↵0 ` J⌧K and it is not difficult to write a
coercion function from CG ↵0 ` J⌧K to CG ↵0 ↵0 J⌧K. The fourth premise of the FG-case
rule is ⌧ & `, so ⌧ = A`0 for some `0 w ` and J⌧K = Labeled `0 JAK. The required coercion
function is �x : (CG ↵0 ` J⌧K). toLabeled(bind(x, y.unlabel(y)).

However, in the case ↵0 6v `, such a coercion function may not exist. Concretely,
consider the lattice L v {M1, M2} v H with M1, M2 incomparable, ↵0 = M1, ` = M2

and ⌧ = AM2 . In this case, our goal is to coerce CG M1 H (Labeled M2 JAK) to
CG M1 M1 (Labeled M2 JAK). This is impossible in CG: Our only hope of getting rid
of the H in the given type is to use toLabeled, but that would push the H into the label
of the resulting value.

It follows, therefore, that even our revised translation does not work. However, on
any fragment of FG where the second case ↵0 6v ` can never arise, this translation
would work. In the following, we identify such a fragment, FG�.

The fragment FG�. Because ↵0 is arbitrary and the only constraint on it is ↵0 v pc,
disallowing ↵0 6v ` is the same as always forcing pc v `. One simple way of ensuring
pc v ` is to restrict FG to a fragment in which ⌃; ;� `pc e : ⌧ implies ⌧ & pc. Then,
(1) would force pc v `. Defining such a fragment is straightforward. We only need
to restrict the types in the conclusions of the typing rules for all introduction forms
like pairing, functions, inl, inr, etc. to be labeled pc (currently, these rules allow the
label ?). Elimination rules do not require any changes (although some premises in the

ACM SIGLOG News 18 January 2017, Vol. 4, No. 1

elimination rules become redundant, e.g., the premise ⌧ & ` in the rule FG-case). We
can then show inductively that ⌃; ;� `pc e : ⌧ implies ⌧ & pc.

For instance, the rules FG-var and FG-lam of Figure 1 are replaced with the follow-
ing more restrictive rules.

⌃; ` ⌧ v ⌧ 0 ⌧ 0 & pc

⌃; ;�, x : ⌧ `pc x : ⌧ 0
R-var

⌃; ;�, x : ⌧1 ``e
e : ⌧2

⌃; ;� `pc �x.e : (⌧1
`e! ⌧2)

pc
R-lam

Lemma 3.2. ⌃; ;� `pc e : ⌧ in FG� implies ⌃; ` ⌧ & pc.

We can prove that on the fragment FG�, the translation J·K defined above is total
and type-preserving. We have to first define a type derivation-directed translation of
expressions, whose straightforward details we elide here (the details can be found in
the accompanying technical report). This translation is written ⌃; ;� `pc e : ⌧ ;

⌃; ; J�K ` e0 : 8↵.(↵ v pc)) CG ↵ ↵ J⌧K.

Theorem 3.3 (Soundness, FG�
; CG). If ⌃; ;� `pc e : ⌧ has a valid FG� typ-

ing derivation, then there exists an e0 such that ⌃; ;� `pc e : ⌧ ; ⌃; ; J�K ` e0 :
8↵.(↵ v pc)) CG ↵ ↵ J⌧K and ⌃; ; J�K ` e0 : 8↵.(↵ v pc)) CG ↵ ↵ J⌧K has a valid CG
typing derivation.

4. OTHER TYPE SYSTEMS
Several other type systems for information flow control can be classified as either fine-
grained [Pottier and Simonet 2003; Volpano et al. 1996; Heintze and Riecke 1998] or
coarse-grained [Matos 2006; Russo 2015; Buiras et al. 2015]. Of particular note is the
dependency core calculus (DCC) [Abadi et al. 1999]. DCC uses a monad to track de-
pendencies, in a manner similar to CG, but is otherwise pure. [Abadi et al. 1999] show
how several calculi for dependence analysis can be translated to DCC. One of these
calculi is a first-order calculus with references [Smith and Volpano 1998]. This calcu-
lus has a rule very similar to the case analysis rule of FG, whose translation failed in
Section 3.2. A priori, it seems that we ought to be able to examine the translation from
[Smith and Volpano 1998] to DCC to understand how to translate FG’s case analysis
rule to CG. However, [Abadi et al. 1999]’s translation is not parametric in the security
lattice: It is defined only for the lattice LH, and treats the (analogues of the) FG judg-
ments ⌃; ;� `L e : ⌧ and ⌃; ;� `H e : ⌧ completely differently. Indeed, we expect
that such a non-parametric translation would also exist from FG to CG, at least for
the lattice LH.

5. CONCLUSION
At their core, type systems for information flow control perform dependence analysis.
Moving from a fine-grained to a coarse-grained dependence analysis trades off preci-
sion for fewer type-label annotations. In this article, we have initiated a study of the
relative expressiveness of these two approaches by considering type-preserving trans-
lations from a coarse-grained type system to a fine-grained type system and vice-versa.
Our analysis indicates that the former is straightforward (as expected) whereas the
latter is not.

In ongoing work, we are examining two problems that we have not yet addressed sat-
isfactorily. First, we would like to prove that the translations are operationally sound
(not just type-preserving). Ideally, we would like to derive the noninterference theorem
for one system from the noninterference theorem of the other system and properties
of the translation. Prior work has established similar results for other translations.

ACM SIGLOG News 19 January 2017, Vol. 4, No. 1

For example, [Abadi et al. 1999] establish similar results for the translation of sev-
eral dependency-tracking calculi into DCC. In our setting, the problem is harder due
to the presence of state, whose combination with higher-order functions would compli-
cate any model of types. Second, we would like to find a translation from all of FG to
CG or show that such a translation does not exist. Since Section 3.2 already shows a
translation from FG� to CG, the problem of translating FG to CG simplifies to that of
finding a translation from FG to FG�.

Acknowledgments. We would like to thank Alejandro Russo for discussions on
coarse-grained dependence analysis and for feedback on a draft of this article. This
work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) grant
“Information Flow Control for Browser Clients” under the priority program “Reliably
Secure Software Systems” (RS3) and the DFG collaborative research center grant SFB
1223 “Methods and Tools for Understanding and Controlling Privacy”.

REFERENCES
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A core calculus of dependency. In

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
(POPL). 147–160.

Thomas H. Austin and Cormac Flanagan. 2009. Efficient purely-dynamic information flow analysis. In Pro-
ceedings of the 2009 Workshop on Programming Languages and Analysis for Security (PLAS). 113–124.

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2011. Secure information flow by self-composition.
Mathematical Structures in Computer Science 21, 6 (2011), 1207–1252.

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015. HLIO: Mixing static and dynamic typing for
information-flow control in Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming (ICFP). 289–301.

Andrey Chudnov and David A. Naumann. 2015. Inlined Information Flow Monitoring for JavaScript. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS).
629–643.

Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and Peter Druschel. 2016. Thoth:
Comprehensive Policy Compliance in Data Retrieval Systems. In Proceedings of the 25th USENIX Se-
curity Symposium (USENIX Security). 637–654.

Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. 2009. A security-preserving compiler for distributed
programs: From information-flow policies to cryptographic mechanisms. In Proceedings of the 16th ACM
SIGSAC Conference on Computer and Communications Security (CCS). 432–441.

Joseph A. Goguen and José Meseguer. 1982. Security policies and security models. In Proceedings of the
1982 IEEE Symposium on Security and Privacy (Oakland). 11–20.

Daniel Hedin and Andrei Sabelfeld. 2012. Information-flow security for a core of JavaScript. In Proceedings
of the 25th IEEE Computer Security Foundations Symposium (CSF). 3–18.

Nevin Heintze and Jon G. Riecke. 1998. The SLam calculus: Programming with secrecy and integrity. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). 365–377.

Sebastian Hunt and David Sands. 2006. On flow-sensitive security types. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 79–90.

Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and
Robert Morris. 2007. Information flow control for standard OS abstractions. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP. 321–334.

Peng Li and Steve Zdancewic. 2006. Encoding information flow in Haskell. In Proceedings of the 19th IEEE
Computer Security Foundations Workshop (CSFW).

Ana Almeida Matos. 2006. Typing secure information flow: Declassification and mobility. Ph.D. Dissertation.
École Nationale Supérieure des Mines de Paris.

Andrew C. Myers. 1999. JFlow: Practical mostly-static information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 228–241.

François Pottier and Vincent Simonet. 2003. Information flow inference for ML. ACM Transactions on Pro-
gramming Languages and Systems 25, 1 (2003), 117–158.

ACM SIGLOG News 20 January 2017, Vol. 4, No. 1

Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg. 2016. Fine-grained vs coarse-grained type
systems for information flow control. Technical Report MPI-SWS-2016-012. Max Planck Institute for
Software Systems.

Vineet Rajani, Abhishek Bichhawat, Deepak Garg, and Christian Hammer. 2015. Information flow control
for event handling and the DOM in web browsers. In Proceedings of the 28th IEEE Computer Security
Foundations Symposium (CSF). 366–379.

Alejandro Russo. 2015. Functional pearl: Two can keep a secret, if one of them uses Haskell. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP). 280–288.

Alejandro Russo, Koen Clasessen, and John Hughes. 2008. A library for light-weight information-flow secu-
rity in Haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell (Haskell). 13–24.

Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions and principles. Journal of Computer
Security 17, 5 (2009), 517–548.

Geoffrey Smith and Dennis M. Volpano. 1998. Secure information flow in a multi-threaded imperative lan-
guage. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). 355–364.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011. Flexible dynamic information
flow control in Haskell. In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell (Haskell).
95–106.

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A sound type system for secure flow
analysis. Journal of Computer Security 4, 2/3 (1996), 167–188.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006. Making information flow
explicit in HiStar. In Proceedings of the 7th Symposium on Operating Systems Design and Implementa-
tion (OSDI). 263–278.

ACM SIGLOG News 21 January 2017, Vol. 4, No. 1

