
Fixing Vulnerabilities Automatically with Linters

Willard Rafnsson, Rosario Giustolisi, Mark Kragerup, and Mathias Høyrup

IT University of Copenhagen

Abstract. Static analysis is a tried-and-tested approach to eliminate
vulnerabilities in software. However, despite decades of successful use by
experts, mainstream programmers often deem static analysis too costly
to use. Mainstream programmers do routinely use linters, which are static
analysis tools geared towards identifying simple bugs and stylistic issues
in software. Can linters serve as a medium for delivering vulnerability
detection to mainstream programmers?
We investigate the extent of which linters can be leveraged to help
programmers write secure software. We present new rules for ESLint
that detect�and automatically �x�certain classes of cross-site script-
ing, SQL injection, and miscon�guration vulnerabilities in JavaScript.
Evaluating our experience, we �nd that there is enormous potential in
using linters to eliminate vulnerabilities in software, due to the relative
ease with which linter rules can be implemented and shared to the com-
munity. We identify several open challenges, including third-party library
dependencies and linter con�guration, and propose ways to address them.

1 Introduction

Motivation. JavaScript is the most commonly used programming language to-
day [36]. Popularized by the Web, JavaScript is now ubiquitous, used for imple-
menting all kinds of software, including Web apps and services, desktop apps,
mobile apps, and even embedded software. Its appeal is that it is dynamically and
weakly typed, and that it is, at its core, quite simple. However, this is a double-
edged sword; the type system and full semantics of JavaScript are infamous for
their quirks [18] that frequently befuddle programmers, even experienced ones.
As a result, bugs routinely make their way to deployed JavaScript code. These
can lead to vulnerabilities that get exploited in privacy attacks, such as injection
attacks, serialization attacks, and cross-site scripting attacks [30].

Static analysis is a tried-and-tested approach to eliminate bugs prior to de-
ployment [13]. It involves reasoning about the behavior of a program without exe-
cuting it, to see if it possesses an undesired property, e.g. �has certain bugs�. Since
a static analysis tool cannot be both free of false-positives and false-negatives
(unless the property is trivial [32]), correctness proofs for tools typically focus
on no-false-negatives, so e.g. �code deemed bug-free really is bug-free�. Static
analysis is successfully used by specialists at large companies, in situations where
bugs are deemed too costly, e.g. SLAM at Microsoft [7], Infer at Facebook [10],
Spark Ada at Boeing [15], and PolySpace at NASA [9]. Tools for enforcing secu-
rity policies in JavaScript code, e.g. access control [28], information-�ow [17], and

others [16], have long existed. However, despite the use of such tools being long
advocated [11], mainstream programmers seem reluctant to use static analysis
tools in general [22], due to the poor manner in which they present issues, and
the overwhelming number of false positives they generate [8,43,33].

Enter linters. A linter is a static analysis tool that scans (i.e. lints) code for a
wide range of issues, including bugs, programming errors, suspicious constructs,
stylistic errors, and code smells [40]. Linters have been used extensively since
the 70s for all major programming languages, famous examples being Lint [24],
FindBugs [6] and ESLint [46] for C, Java, and JavaScript respectively. Strikingly,
mainstream linters have no correctness proofs. Rather, the focus of linters is on
providing usable improvement suggestions and on reducing false positives [6,40].
This is indeed their appeal; for JavaScript, an overwhelming majority of devel-
opers use linters, and they do so to catch errors and produce maintainable code
by reducing complexity and enforcing style [40]. Linters are even used together
with unit tests as a second line of defense against bugs [40]. Finally, modern lin-
ters are fully con�gurable; linter rules can be toggled for di�erent parts of the
code base, and new linter rules can be developed in-house or downloaded from
a community-maintained repository [46]. As new bugs, guidelines, and libraries
arise, linters can immediately be con�gured to adapt.

With the lack of mainstream success of advanced static analysis tools for
security, and with the popularity of linters, perhaps the most impactful way to
deliver vulnerability checking to programmers is through a linter.

Contribution. We investigate the extent of which linters can be leveraged to
help programmers write secure code. We focus on ESLint, as it is the most
commonly used linter for the most commonly used programming language.

First, we present new rules for ESLint for eliminating vulnerabilities. These
rules detect�and automatically �x�certain classes of cross-site scripting, SQL
injection, and miscon�guration vulnerabilities, all of which are on the OWASP
Top Ten list of Web application security risks [30]. Some of these rules are library-
dependent, checking for vulnerabilities in the use of React [21] and Express [37],
the two JavaScript frameworks that make up the popular MERN stack [26]. We
demonstrate the practicality of these rules, notably that they have few false-
positives, with examples and unit tests.

Next, supported by our experience, we critically evaluate the state-of-the-art
in the use of linters to eliminate vulnerabilities. We evaluate the strengths and
limitations of ESLint for eliminating vulnerabilities and �nd that, while ESLint
provides useful facilities for analyzing code, there are shortcomings, notably that
it only scans one �le at a time. This has consequences when considering library
dependencies. We survey existing ESLint plugins, and �nd only a few rules that
check for vulnerabilities. The handful of those that see notable use identify only
a few vulnerabilities, and focus on reducing false negatives, to the point that (we
argue) the rule becomes too much of a hassle to use, and thus gets disabled by
programmers. We analyze the ESLint guidelines for creating new rules [39], and
�nd that most of the guidelines run counter to the needs of a rule that eliminates
vulnerabilities. We also �nd that con�guring ESLint is nontrivial, which is a

well-known barrier to using linters e�ectively [40], and propose outsourcing the
maintenance of linter con�guration to community experts.

Finally, we make observations as well as recommendations with regards to
using linters to eliminate vulnerabilities. We �nd that there is a great, and un-
explored, potential in using linters to eliminate vulnerabilities. This is based on
the popularity of ESLint, the rich features that ESLint provides for analyzing
code, the scarcity and inadequacy of existing rules for security, and the relative
ease with which we successfully implemented rules that are more practical. We
�nd it crucial that linters are fully con�gurable. Community-maintained linter
rules made ESLint successful, and are a necessary feature if programmers are to
keep up with the rapidly-evolving security landscape. For the same reason, it is
important that linter con�guration can be outsourced to experts. For rules to
be useful, we �nd it important that it be clear what kind of vulnerabilities the
rule intends to detect. The rule should also detect vulnerabilities as precisely
as possible, i.e. few false alarms. Together, this saves time, instills con�dence,
and reduces frustration, in the programmer. Finally, linters must provide more
comprehensive means of scanning source code. Crucially, linters must analyze
dependencies on third-party libraries. This is because 93% of the code of a mod-
ern Web application is open-source library code [42], 70.5% of Web apps have
vulnerabilities from a library, and the vast majority of those vulnerabilities are
known or have been patched [41]. A linter could detect these vulnerabilities.

Outline. We describe what we advocate in Section 2. We summarize ESLint in
Section 3. We present our linter rules that �nd and eliminate vulnerabilities in
Section 4. We evaluate the state-of-the-art against our experience in Section 5,
and provide our recommendations in Section 6. Finally, we contrast our �ndings
with related work in Section 7, and conclude in Section 8.

2 In A Nutshell

Mainstream programmers routinely use linters to eliminate bugs and improve
the quality of their code. This is illustrated in Figure 1. This JavaScript code
sends a request to myapi.com and assigns the data in the response to the href on
the page. The programmer has integrated ESLint, a linter for JavaScript, into
her integrated development environment (IDE). ESLint reports, in Figure 1a,
that this code may be vulnerable to a cross-site scripting attack, since the data
received from myapi.com, and thus the URL in the href, could be controlled by
an attacker (e.g. if the API reads from a database that the attacker can inject
code into). This way, the attacker injects JavaScript into the response, which
would get executed on the client upon pressing the URL. More importantly,
ESLint also presents the option to automatically �x the vulnerability. Picking
this option yields the code in Figure 1b, which �xes the vulnerability by sanitizing
the response from myapi.com.

This is no-href-and-src-inline-xss, one of the ESLint rules that we pro-
pose in this paper, at work. It is this kind of automatic �nding and �xing of
vulnerabilities that we desire and advocate. Automatic �xing of vulnerabilities

(a) �nding a vulnerability

(b) �xing a vulnerability

Fig. 1: Using a linter in an IDE to �nd & �x a vulnerability.

is incredibly valuable to mainstream programmers, as some vulnerabilities are
notoriously di�cult to debug, requiring expertise and deep knowledge about the
whole code base. Our goal in this paper is to investigate the extent of which
linters can deliver on this. We do this in the context of JavaScript, and its most
popular linter, ESLint.

3 ESLint

ESLint [46] is a linter for JavaScript. Initially released in 2013, ESLint has since
become a de facto standard tool for JavaScript development, used by the vast
majority of JavaScript developers [40]. ESLint is actively developed, supporting
both current and upcoming standards of ECMAScript.

A description of how ESLint and its rules work can be found in the appendix.
We now brie�y list the de�ning features of ESLint.

3.1 Features

ESLint has several features that distinguish it from other linters.

Automatic. ESLint can �x problems automatically, thus freeing the developer
from coming up with a �x.

Customization. ESLint rules can be turned on and o�, new rules can be added
by downloading plugins from a community-maintained repository, and de-
velopers can maintain their own custom rules in-house.

Integration. ESLint builds into mainstream text editors and IDEs and can be
run as part of a continuous integration and deployment (CI/CD) pipeline.

ESLint is a community-e�ort; it is open-source (thus freely available), and ac-
tively scrutinized by its community. The ESLint developers emphasize the im-
portance of clear documentation and communication; rules should be well doc-
umented, provide useful improvement suggestions, and have few false-positives.

4 ESLint Rules for Fixing Vulnerabilities

We implement four new ESLint rules for �nding and �xing vulnerabilities. Our
rules target well-de�ned instances of today's most critical Web security risks
from the OWASP Top Ten [30]: cross-site scripting, server miscon�guration, and
SQL injection. Three of our rules not only detect, but automatically �x, the
vulnerabilities. We demonstrate that the rules have few false positives with unit
tests. Together, this shows that linters can help programmers write secure code.

For each rule, we describe the vulnerability it targets, how existing ESLint
rules fall short, our rule implementation, and automatic code �xing.

Testing. Our rules sections have multiple unit test �les corresponding to the
di�erent use cases described for each rule. The tests utilize the built-in ESLint
rule tester to validate code cases for the absence of false alarms, as well as for
validating the automatic �xer functionality when applicable.

4.1 Cross-Site Scripting

Vulnerability. Cross-site scripting (XSS) is a code injection vulnerability where
a victim, while navigating a benign (yet vulnerable) Web page, unwittingly exe-
cutes attacker-controlled data in the browser. This lets an attacker obtain private
information (e.g. access cookies and session tokens) from the victim's browser,
redirect the victim to a malicious website, and more, all while the victims believe
they are interacting with the original benign Web page. Our rule targets speci�c
kinds of DOM XSS vulnerabilities, i.e. where a page calls a JavaScript API and
uses the response to modify a DOM element in the victim's browser; an attacker
can exploit a vulnerable API to ship code to the victim's browser. Concretely,
we focus on modi�cations of src attributes, and of the href attribute of anchor
tags. An example of such a vulnerability is the following.

1 fetch("myapi.com").then(res => a.href = res.data);

This is the scenario presented in Section 2. The result of the API call may contain
unsanitized attacker-controlled data. Such data might contain a malicious script
that will be executed in the victim's browser upon link activation.

Existing Rules. The most notable plugin which includes rules for detecting
XSS is eslint-plugin-no-unsanitized. It includes rules that detect unsanitized
data used for manipulating the HTML content of DOM elements. However, the
plugin considers only the HTML content of elements, and is not capable of
detecting vulnerabilities that occur when manipulating href and src attributes.
Furthermore, the rules result in a lot of false positives; as existing user studies
have pointed out [8,43,33], this would discourage programmers from activating
the rule. Upon investigation, we found that the main issue is that the rule only
considers explicit strings in the DOM assignments as safe, and raises a �ag in
any other case. We observe that there are, in fact, many valid and safe cases
of DOM assignments, which could be ruled out as a possible vulnerability. One
example of this would be the use of a variable holding an explicit string in the

assignment. Additionally, the rules do not support web development frameworks
that render HTML content dynamically, such as the popular framework React.

Our Approach. Our approach targets XSS attacks through modi�cation of
href and src attributes. This has not been addressed by ESLint plugins to date.

To achieve this, we maintain a set of variable identi�ers that are in a safe
state at any point while traversing the AST. We determine whether a variable is
in a safe state by tracking and evaluating the values of all variable initializations
and assignments in the code. We consider explicit strings as well as constructs
that implicitly form string expressions from other explicit strings safe. This re-
duces false positives without a�ecting correctness. The bene�t of this is clear
when using template strings and string concatenations that involve variables
that contain e.g. explicit strings.

When our no-href-and-src-inline-xss rule is run on the example above, it
outputs the message "href property value might be XSS vulnerable", and high-
lights the ".href =" part of the code. Our rule documentation, accessible within
ESLint, provides further information about the vulnerability to the programmer.

This approach generalizes to the use of libraries and frameworks. Our rule
no-href-and-src-inline-xss-react shows this; it detects the same vulnerability
in the use of Facebook's React [21] framework. Here, in addition to tracking
the safety of variables, we need to track the safety of values held in special
React states. React uses JSX (see React documentation) to dynamically render
content and automatically modify the DOM in the user's browser. This syntax
also applies to the src and href attributes, and the rule therefore considers this
feature speci�cally. While the previous rule is part of the "recommended" rule set
of the plugin, this rule is part of the "react" rule set. The two rules are speci�cally
implemented in such a way that they do not con�ict or overlap. The rule set of an
ESLint con�guration is normally extended �rst by recommended rules, and then
by any additional rules, such as React-speci�c rules for full framework support.

Automatic �x.We take advantage of the �xer functionality of the ESLint inter-
face to enable the programmers to automatically �x the vulnerability identi�ed
by these rules. When selected by the programmer, the rule applies our suggested
code change to the �le directly.

When a value might contain malicious code, it is recommended to sanitize the
value before using it. Unfortunately, while some libraries, such as Angular and
React, sanitize some strings behind-the-scenes, their sanitization is not complete,
and only focuses on <script> tags. Furthermore, SQL libraries have sanitization
functions to protect against SQL injection attacks, which do not trivially port to
our scenario. We propose a novel way of escaping executable code, using built-in
Javascript string functions to sanitize the javascript: pre�x.

1 val.toLowerCase().replace('javascript:','/javascript/:/'))

Applying the automatic �xer to the above example results in a replacement of
the right-hand side of the assignment of the href attribute with escaping applied.

1 fetch("myapi.com").then(res => a.href =
(res.data).toLowerCase().replace('javascript:','/javascript/:/'));

Limitations. Our rules do have some false positives. Our rules �ags any as-
signment of any function application regardless of its safety, due to the concern
that the function calls an API which retrieves attacker-controlled data. For ex-
ample, "my".concat("string"); is safe, yet is �agged as unsafe. Furthermore, we
have not tested the sanitization function in our �xer; it could potentially be cir-
cumvented through the use of �lter evasion. There may also be tried-and-tested
sanitizers that we can, and should use, such as the xss-filters package in npm.

4.2 Security Miscon�guration

Vulnerability. Security Miscon�guration is a broad security problem with equally
broad rami�cations. These can arise e.g. from default con�gurations, default
credentials, unnecessary features being enabled (e.g. ports) or installed, and un-
patched �aws in the server software/hardware stack. Our rule targets miscon�g-
uration of HTTP response headers in Node.js backend applications, speci�cally
ones built on the Express [37] Web application framework. The aim of the rule
is to eliminate certain clickjacking, MIME-sni�ng, and XSS attacks, by rec-
ommending the use of the Helmet [19] library for Express, which automatically
con�gures some important HTTP headers in a safe manner. An example is

1 const myApp = require('express');
2 myApp.listen(8080);

This minimal Express application launches a Web server that accepts network
tra�c on port 8080. However, HTTP response headers have not been con�gured.

Existing Rules. The eslint-plugin-security-node plugin has a rule called
detect-helmet-without-nocache. The rule �ags code that uses Helmet for con-
�guring HTTP response headers without the noCache setting enabled. However,
we observe that there are much more impactful security settings available in
Helmet; Helmet provides a set of default con�gurations for security [19] which
can be enabled by invoking the Helmet object. No available ESLint rule encour-
ages the use of these defaults. Furthermore, the existing rule encouraging the
use of noCache is very limited in the cases that it covers. For example, it only
considers programs where the variable holding the Express object is named app;
if any other name is used, the rule would �ag the concerned code, regardless
of whether the code is vulnerable or not. Finally, noCache is deprecated. To the
best of our knowledge, there are no other ESLint plugins that detect HTTPS
response header vulnerabilities.

Our Approach. Our approach targets the use of Express without Helmet. It
keeps track of the correct usage of Helmet with the recommended defaults and,
if the recommended defaults are not correctly enabled, �ags the line of code that
launches the application.

To achieve this, we track whether Express and Helmet are enabled, and track
identi�er names holding the corresponding object instances. If the application
uses Express but does not import Helmet at all, we �ag the code as unsafe. If
Helmet is imported, but the recommended defaults are not invoked, we also �ag

the code as unsafe. Since we cover all cases, our rule has few false alarms. Our
rule is more general than the previous ones since it considers all uses of Express,
and not just uses of Express, in an object named app, without noCache.

When our detect-missing-helmet rule is run on the example above, it outputs
the message "Use the Helmet.js module for enhanced security on HTTP response
headers in your Express application." with a link to the setup documentation.
Our rule also suggests the use of the expectCT Helmet setting for information
purposes (without enforcing it), which can help prevent certi�cate abuse.

Automatic �x. Again, we empower the programmer to �x this vulnerability,
by implementing an ESLint �xer.

We utilize the stored identi�er names to provide correct adaptations of the
vulnerable code, which involves simply inserting lines that import Helmet and
invoke it with its defaults. Applying our �xer on the above example thus yields
the following modi�ed code.

1 const myApp = require('express');
2 const helmet = require('helmet');
3 myApp.use(helmet());
4 myApp.listen(8080);

4.3 SQL Injection

Vulnerability. SQL Injection is a code injection vulnerability where an attacker
can, by carefully crafting input data to the Web application frontend, inject his
own SQL queries into the database in the backend. This can enable the attacker
to bypass login authentication checks, read or modify database records, execute
administrative operations on the database, and, in some cases, even issue com-
mands to the underlying operating system. Our rule targets the occurrence of
variables in the construction of SQL query strings in Node.js backend applica-
tions. An example of this follows.

1 let phone = readline.question("Your phone number?\n");
2 const sql = 'SELECT * FROM users WHERE tlf = ' + phone;
3 dbConnection.query(sql, (err, result) => console.log(result));

This minimal command-line Node.js application queries a database of users for
a record matching a phone number. However, the phone number is supplied as a
variable; an attacker can obtain the whole table by providing the phone number
"' OR 1=1" as input, or delete the users table by providing the phone number
"'; DROP TABLE users".
Existing Rules. The previously mentioned plugin eslint-plugin-security-
node has a rule for detecting SQL injection vulnerabilities: detect-sql-injection.
This rule �ags all queries that provide anything other than an explicit string as
its �rst parameter. This leads to an explosion in the number of false positives.
For example, the rule �ags as vulnerable when an explicit string is stored in a
variable, or when two explicit strings are concatenated into the parameter. Fur-
thermore, the most common SQL queries for Web application depend in some

way on user input, such as queries for login credentials. Alarmingly, the rule only
considers cases where the database connection is stored in a variable named ei-
ther connection, connect, or conn. Using a di�erent name causes the rule to
disregard the SQL queries, leading to potential false negatives. This limitation
is not present in the plugin documentation.

Another plugin is eslint-plugin-sql-injection, which just includes a single
rule for detecting SQL injections. The approach here is to check if a query call
is using string concatenations where at least one value, in the concatenation, is
not an explicit string. While this does reduce false positives (compared to the
previous rule), it does dramatically increase false negatives. For instance, this
rule does not �ag a variable if it is not used in a concatenation or a template
string. The rule also requires the programmer to manually specify the name of the
function which queries the database in the ESLint con�guration �le. If the user
does not provide such a con�guration, the rule does not �ag any vulnerabilities,
leading to false negatives.

Our Approach. Our approach targets the occurrence of variables in queries,
requiring instead the use of a prepared statement. A prepared statement �xes the
structure of the query before values are inserted into the query, thus preventing
such values from modifying the structure of the query.

To achieve this, we follow a similar approach as in our rules for XSS vulner-
abilities. We maintain a set of safe variables throughout the analysis process.
We �ag only code that uses unsafe variables or unsafe values in the SQL query
execution. This reduces false positives, as we do not impose restrictions on vari-
able names. Furthermore, our approach considers any function call named query
which takes parameters. As a result, our approach is not tailored to any speci�c
database driver, which means that it can detect vulnerabilities in queries for e.g.
MySQL, PostgreSQL, etc., since they all export a function named query.

When our detect-sql-injection rule is run on the example above, it out-
puts the message "Parameterize the input for the query, to avoid SQL Injection
vulnerabilities. See more at: https://www.npmjs.com/package/mysql#escaping-
query-values". The warning highlights the query call for visual guidance in IDEs.

Fix. To �x the vulnerability, the programmer can, by looking at the information
presented to him by the rule, turn the query into a prepared statement. For our
example, the following �xed version is accepted by our rule.

1 let phone = readline.question("Your phone number?\n");
2 const sql = 'SELECT * FROM users WHERE tlf = ?';
3 dbConnection.query(sql, [phone], (err, result) => console.log(result));

Neither of the existing rules would �ag neither the original nor �xed version of
this example, thus implying false negatives. However, if dbConnection is renamed
to a name that the rules recognize, then both rules would reject both examples,
thus implying false positives.

For this rule, we do not include the automatic code �xing implementation
as in the previously proposed rules. This is a highly desirable feature; we will
experiment with this in the future (hopefully by the camera-ready deadline).
Implementing this is challenging because this requires changing the code on a

previous line (const sql) while analyzing the node corresponding to the later
line that performs the actual query. This also requires manipulating query strings
and constructing arrays of parameters in a way which supports all possible ways
of constructing such a string.

Limitations. Our rule does have some false positives, notably since it �ags calls
of functions named query. While this catches queries for all common SQL APIs,
it at the same time catches same-named functions on any object.

5 Analysis

Supported by our experience with creating linter rules, we critically evaluate
the state-of-the-art in the use of linters to eliminate vulnerabilities in software.
We analyze ESLint as a tool, existing plugins for ESLint, existing guidelines for
writing rules, and the challenge of maintaining a linter con�guration. We make
four important observations on the prospect of using linter rules for security.

5.1 ESLint Strengths and Limitations

Based on our experience, we evaluate the strengths and limitations of using
ESLint to �nd and �x vulnerabilities.

Strengths. ESLint has several strengths which make it well-suited for helping
programmers �nd and �x vulnerabilities.

First, and most important, is its rules customization. ESLint comes shipped
with a host of rules, which can be turned on and o� for di�erent parts of the
code base. More importantly, programmers can create their own custom rules
in-house. ESLint provides a rich API for this; rules can maintain their own state,
traverse the AST freely when invoked, and precisely assign blame to sections of
the code that are at fault. Crucially, ESLint provides an API for automatically
�xing a vulnerability. This is immensely bene�cial to programmers, as debugging
a vulnerability can be a complex, arduous, and time-consuming task. New rules
can be shared with the community on npm, which already contains at least
tens of thousands of linting rules. As soon as a new vulnerability and �x are
discovered, they can be shared with everyone.

Second, ESLint provides advanced linter customization options. ESLint en-
ables a programmer to use, or write, a custom parser, to provide additional
capabilities to linter rules. This would prove useful for writing more advanced
linter rules or for linting syntactic extensions to ESLint. In fact, this is done to
enable linting of TypeScript [20]. Furthermore, a programmer can use, or write,
a custom �processor�, which pre-processes a non-JavaScript �le before parsing
it. This is done to enable linting of non-JavaScript �les that contain JavaScript,
e.g. HTML source �les. In addition, a programmer can use, or write, a custom
formatter, to change how ESLint displays linter results.

Third, and last, is integration. ESLint builds into mainstream text editors
and IDEs, as we have seen in Section 2, making it easy to adopt by mainstream
developers. Furthermore, as is clear from its customization options and since

it can be run from the command-line, ESLint can be run as part of a CD/CI
pipeline, as part of the building, testing, or deployment process.

Limitations. ESLint is not without its limitations, however.
First, like most linters, ESLint has no correctness proof. Not only need the

programmer trust the claim of the maintainers of ESLint that ESLint does what
it claims to do; the programmer also needs to trust the rule creators that their
rules do what they specify. This is mitigated somewhat by the fact that ESLint,
and the rules published on npm are publicly available, meaning that anyone
can scrutinize them for correctness. However, the reason we have correctness
proofs is that no amount of testing can guarantee the absence of bugs, and some
bugs in open-source software are so subtle that they pass human scrutiny for
decades [23]. Until we have formally-veri�ed linters, this is the best we have got.

Second, and last, ESLint only scans one �le at a time. This poses two prob-
lems for using ESLint for security. One is that ESLint will not scan dependencies.
This is an issue since 93% of the code of modern Web apps is open-source library
code [42], and 70.5% of Web apps have vulnerabilities from a library. This can
be mitigated by making overapproximations on calls to libraries, although this
would produce false positives. The other, more serious, problem is compositional
reasoning. Even if all modules that make a modern Web app are scanned sepa-
rately and found to be free of vulnerabilities, the way in which these modules in-
teract may introduce vulnerabilities [29,45]. This can be mitigated by producing,
from all JavaScript �les that constitute a given Web app, one large JavaScript
�le, and then running ESLint on it. However, if ESLint �nds a vulnerability in
that composite �le, assigning blame to the original source �les would be di�cult.

Evaluation. As demonstrated in Section 4, despite these limitations, we were
quite successful in implementing practical rules that help programmers detect
and eliminate vulnerabilities in software. Given how easy it is to share rules with
the community, the potential impact of doing this is high. In fact, after being
on npm for 1 week, our plugin has over 1.000 weekly downloads. This is without
any promotion of the plugin. As awareness of this plugin increases, we imagine
that its popularity will increase.

Observation 1 Linters can (and should) be used to detect and eliminate vul-
nerabilities in software.

Observation 2 The potential impact of creating and sharing linter rules for
security is high.

5.2 ESLint Security Plugins

Given the above observations, the popularity of linters, our success with creat-
ing rules for vulnerabilities, and the prevalence of vulnerabilities in software, it
stands to reason that ESLint would have rules for �nding and �xing vulnerabil-
ities in quantity and quality. Surprisingly, we �nd that this is not the case.

We surveyed the security relevance of more than 250 ESLint plugins in npm,
in descending order of popularity, by brie�y looking at their descriptions and

then investigating the implementations of those that contain security-related
rules. We also speci�cally investigated a handful of less popular security-speci�c
plugins. We summarize our �ndings for the most relevant plugins in the following.

eslint-plugin-security. (135.000 weekly downloads). This plugin informs pro-
grammers of a wide range of vulnerabilities in Node.js applications. It is the most
popular ESLint security plugin. The popularity of the plugin is consistent over
time. However, the maintenance of the code is not, with more than three years
since the last update. Furthermore, as stated on the npm page of the plugin,
the rules have a lot of false positives. Finally, the rules target narrow situations,
none of which fall under the vulnerabilities that we target with our rules.

eslint-plugin-security-node. (900 weekly downloads). This plugin also cov-
ers a wide range of vulnerabilities for Node.js applications. It has considerable
overlap with the previous ones but does attempt to cover some di�erent vulnera-
bilities. No documentation exists for many of the rules, and the quality of the rule
implementations is very low. Some of the rules have considerable false negatives.
This is illustrated in rules detect-sql-injection and detect-helmet-without-
nocache, which we discussed in Sections 4.2 and 4.3; if variables do not have the
names that the rules expect, the rules completely disregard the code, thus pos-
sibly accepting vulnerable code. Despite the plugin being last updated 4 months
ago, one of the rules throws an exception if the plugin is installed in projects
using Node.js version 14 or above.

eslint-plugin-no-unsanitized. (25.000 weekly downloads). This plugin dis-
courages developers from using unsafe manipulation of the DOM with methods
such as document.write and .innerHTML. The goal is to prevent XSS attacks. The
plugin is consistently maintained by Mozilla. However, the rules have several
shortcomings, discussed in detail in Section 4.1: The rules in the plugin generate
many false positives; they only allow explicit strings in DOM assignments. Fur-
thermore, the rules do not consider the manipulation of href and src. Finally,
the rules do not support Web frameworks that render HTML dynamically, such
as the popular React.

eslint-plugin-no-unsafe-innerhtml. (12.000 downloads per week). This plu-
gin is the same as the previous one, except with a smaller scope of considering
.innerHTML assignment. It was last updated 3 years ago.

eslint-plugin-no-secrets. (5.000 weekly downloads). This plugin discourages
programmers from having di�erent kinds of secrets in the source code. The rule
uses regex to �nd patterns of potentially secret values in the code. However, the
rule has false negatives, in the form of secrets that do not match any of the given
patterns. The rule does include, as an option, to ignore speci�c secret identi�ers,
which can help decrease the number of false positives that the rule generates.
The plugin was updated within the last 3 months.

eslint-plugin-sql-injection. (2 weekly downloads). This plugin discourages
programmers from using string concatenation in SQL query execution. As dis-
cussed in detail in Section 4.3, this rule has a lot of false negatives, since it
ignores all variables that are not speci�ed in the rule con�guration, and even
then, does not consider e.g. template strings. It has not been updated in 2 years.

Evaluation. There are surprisingly few plugins that target vulnerabilities. The
handful of security rules that see notable use identify only a few vulnerabilities in
total. Alarmingly, they focus overwhelmingly on reducing false negatives, while
still having considerably many false positives, to the point that the rules might be
too inconvenient use, and thus gets disabled by programmers. Finally, the checks
that the rules are making are rather simple. As demonstrated in Section 4, we
were able to implement security rules as a proof-of-concept with relative ease.

Observation 3 The e�ort needed to create & share linter rules for security is low.

Observation 4 Linting for vulnerabilities is underexplored.

5.3 ESLint Rule Guidelines

Pondering the reason for the state of ESLint plugins for security, we analyze the
ESLint guidelines for creating new core rules [39], to assess whether the guidelines
are a good �t for writing rules for security. We �nd that most of the guidelines
run counter to the needs of a rule for security. The following is a summary of
the guidelines:

Widely applicable. The rule should be of importance to a large number of
developers; no individual preferences.

Generic. The rule must not be so speci�c that it is hard to know when to use
it; at most two �and�s.

Atomic. The rule must work on its own, and be oblivious to other rules.
Unique. The rule must not produce same warnings as existing rules (no overlap)

as that confuses the programmer.
Library-agnostic. The rule must not be based on speci�c libraries or frame-

works (except Node.js).
No con�icts. The rule must not con�ict with other rules.

For a rule to be incorporated into the core rules set, the rule had1 to follow
these guidelines. However, �widely applicable� and �generic� runs counter to the
fact that vulnerabilities arise under highly speci�c circumstances, and �library-
agnostic� runs counter to the fact that most vulnerabilities arise from libraries
and their use, as explained under limitations in Section 5.1. While a rule author
does not have to follow these guidelines, she might want to, in the hope that the
rule makes its way to core, and thus has more impact. Finally, these are the only
guidelines for writing rules; there are no guidelines for writing rules for security.

5.4 ESLint Con�guration

Con�guring ESLint is a nontrivial task, which is a well-known barrier to using
linters e�ectively. A study conducted by Delft University of Technology in 2019,
shows that 38,3% of the study participants (all JavaScript developers) agreed
that "creating or maintaining con�gurations was a challenging part of using a
linter." [40] This validates our perception that the domain of linters contains
problem areas and di�culties worth exploring and improving.

1 ESLint no longer accepts new rules into the core rule set, as of 2020.

6 Recommendations

We formulate four recommendations on the use of linters for security.

Recommendation 1 Linters should be con�gurable

We �nd that there is no linter that comes with a set of �xed rules that addresses
all critical security vulnerabilities. This observation is corroborated by our new
rules on cross-site scripting, which demonstrate that the one-rule-�x-all approach
is insu�cient to tackle all facets of cross-site scripting attacks. Hence, linters
should be con�gurable and pluggable so that users can extend them with either
in-house rules or with community rules, which the users can enable as needed.

Recommendation 2 Linters should scan code di�erently to enable the �nding
of more security vulnerabilities

We have found that linters are precluded from �nding some vulnerabilities be-
cause �les are evaluated individually and in an arbitrary order. However, �les
often depend from other �les, and vulnerabilities may arise by looking on how
such �les depend on each other (e.g. library dependencies). We observe that this
can be potentially �xed by scanning multiple �les, with the evaluation order pro-
vided by the user or automatically suggested. A linter could even report issues
in libraries to the library authors, along with instructions on how to patch the
vulnerability. With more general ways of scanning code in place, a linter can be
viewed as a framework for implementing static analysis tools.

Recommendation 3 Linter security rules should have proper descriptions

We have found that existing rules do not precisely describe what kind of
vulnerabilities they intend to detect. Rules should instead provide the user with
a precise explanation of the potential issue �agged in a piece of code. Failing in
doing so may a�ect the user understanding of the possible issues with their code
and, even worse, may lead the user to ignore the output of the rule. We believe
that providing proper descriptions is a key enabler to retain linter popularity
also for �nding security vulnerabilities.

Recommendation 4 Linter security rules should maximize case coverage and
reduce false positives

A rule should detect as many instances of a vulnerability as possible, and it
should do so as precisely as possible. The value that a rule provides to the pro-
grammer scales with its ability to correctly �ag as many possible vulnerable
code cases as possible. However, a rule should strive to eliminate false positives
as these are a signi�cant challenge when using linters [40]. Intuitively, maximiz-
ing case coverage and reducing false positive might be seen as two contrasting
requirements: attempts at maximizing case coverage may introduce new false
positives. Moreover, from a security perspective, much focus is put on avoiding

missing vulnerabilities hence avoiding false negatives. However, we observe that
the number of false positives a�ect considerably the development �ow of the
user, who has to investigate each �agged case to determine whether it is a false
negative or not, which can lead the user to decide to disable the rule.

7 Related Work

A comprehensive list of open source and commercial static analysis tools is avail-
able in [31]. Here, we focus on prior works on linters and linter-like tools for
JavaScript and other programming languages, putting emphasis on how they
address security vulnerabilities.

JSLint [12] and JSHint [27] are two popular linters for JavaScript. The former
being more dogmatic in linting, the latter being more �exible. None of them fo-
cuses on linting for security vulnerabilities nor allows for user-developed plugins.
Sonarlint [35] is a linter that supports several programming languages, including
JavaScript. It notably categorizes security-related rules in vulnerabilities and
security hotspots. A vulnerability has a higher security impact than a security
hotspot. For example, the use of a Web SQL database is considered a vulner-
ability, while hardcoding credentials is considered a security hotspot. Sonarlint
cannot be extended via plugins and, at the time of writing this paper, it counts 3
non-deprecated vulnerability rules and 15 security hotspot rules for JavaScript.
Similarly to our detect-sql-injection rule, Sonarlint has a rule that �ags the
execution of SQL queries that are built using formatting of strings. However,
di�erently from our approach, Sonarlint has limited coverage on Node.js APIs
and does not cover cross-site scripting attacks.

Several linters for other programming languages than JavaScript have con-
sidered vulnerability rules. Splint [14] is probably the �rst extensible linter for
security vulnerabilities. It parses C code to �nd potential bu�er over�ows and
provides a general language that enables users to de�ne their own rules. How-
ever, to the best of our knowledge, there are no community-driven rules available
today, hence, making a proper comparison against our proposed rules is impos-
sible. Flaw�nder [44] is a simpler tool that instead does a lexical analysis of
C/C++ code in order to �nd security weaknesses. It has been recently found
that Flaw�nder detects more types of vulnerabilities than its competitors [25].
Cpplint[1] is an automated checker to make sure that a C++ program follows
Google's style guide, which includes very few security tests. Neither Flaw�nder
nor Cpplint supports plugins.

Bandit [4] is a linter for �nding security issues in Python code. Similarly
to ESLint, Bandit allows one to write a plugin that can extend the tool with
additional security tests. To the best of our knowledge, Bandit has not been
as successful as ESLint in attracting new plugins. Di�erently from the rules
proposed in our work, most of the preinstalled tests in Bandit concern hardcoded
strings such as passwords, and command injections vulnerabilities such as attacks
due to invoking external executables.

FindBugs [6] is a popular linter for Java with over 30 rules for security. It
is not extensible. SpotBugs [2] is deemed as the successor or FindBugs and is
extensible; Find Security Bugs [5] is the SpotBugs plugin for security vulner-
abilities. However, SpotBugs does not provide a repository of plugins. Neither
FindBugs nor SpotBugs facilitate automatic bug �xing.

GoCritic, Revive, and Ruleguard are linters for Go that allow external rules.
A comparison of the tools is provided in [34]. Gosec [3] is a security linter for Go.
It has a limited and not user-extensible number of available rules. It includes
rules that raise issues in case of SQL query constructions using format string or
string concatenation. However, it does not cover cross-site scripting attacks.

8 Conclusion

Linters are static analysis tools that have great potential to automatically detect
and eliminate vulnerabilities in software. This topic is relatively unexplored, and
in this work, we have investigated to which extent linters can help mainstream
programmers to deliver vulnerability detection, with a speci�c focus on how a
pluggable linter can help JavaScript programmers to write secure code.

We have found that the e�ort required to create ESLint rules for security
vulnerabilities is rather low, while the impact of creating such rules is poten-
tially high. This requires, however, the rules being well documented and being
engineered to minimize false positives.

We also observe that linters should be easily con�gurable to adapt to the
new security vulnerabilities facets that may arise in libraries, fostering the rapid
development of rules that address such vulnerabilities. Similarly, linters should
facilitate the scanning of dependencies since vulnerabilities are likely to come
from invoked libraries [42].

We have demonstrated that automatic vulnerability �xing is e�ective, and
believe that linters have the potential to enable detection and correction of vul-
nerabilities in libraries even before the library developers produce a patch for the
vulnerable code: a library developer may add a rule for ESLint while working
on a long-term �x for the vulnerability. We also note that library developers
who do not use linters may introduce well-known vulnerabilities in their code.
Linters that already have community-driven rules addressing such well-known
vulnerabilities can thus facilitate the report of them to library developers.

Obviously, linters are not the sole tool for e�ective vulnerability detection
and �xing. Other approaches might achieve a better balance in terms of security
and tool popularity. With this work, we aim at broadening the view and at
stimulating discussion within the program analysis community towards novel
and practical ways to tackle vulnerability detection and �xing in software.

References

1. Cpplint (2009), https://github.com/cpplint/cpplint/
2. Spotbugs (2017), https://spotbugs.github.io/
3. Gosec - golang security checker (2018), https://github.com/securego/gosec
4. Bandit (2019), https://github.com/PyCQA/bandit
5. Arteau, P.: Find security bugs (2012), https://find-sec-bugs.github.io
6. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static

analysis to �nd bugs. IEEE Softw. 25(5), 22�29 (2008)
7. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-

drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: Proceedings of the 2006 EuroSys Conference, Leuven, Belgium, April 18-21,
2006. pp. 73�85. ACM (2006)

8. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Gros, C., Kamsky,
A., McPeak, S., Engler, D.R.: A few billion lines of code later: using static analysis
to �nd bugs in the real world. Communications of the ACM 53(2), 66�75 (2010)

9. Brat, G., Klemm, R.: Static analysis of the mars exploration rover �ight software.
Proceedings of the First International Space Mission Challenges for Information
Technology pp. 321�326 (2003)

10. Calcagno, C., Distefano, D., O'Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. In: Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009. pp. 289�300. ACM (2009)

11. Chess, B., McGraw, G.: Static Analysis for Security. IEEE Secur. Priv. 2(6), 76�79
(2004)

12. Crockford, D.: Jslint (2002), https://www.jslint.com/
13. Ernst, M.D.: Invited talk: Static and dynamic analysis: synergy and duality. In:

Proceedings of the 2004 ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis For Software Tools and Engineering, PASTE'04, Washington, DC, USA, June
7-8, 2004. p. 35. ACM (2004)

14. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1), 42�51 (2002)

15. Feldman, M.B.: Who's using ada? real-world projects powered by the ada pro-
gramming language november 2014 (2014), https://www2.seas.gwu.edu/~mfeldman/
ada-project-summary.html

16. Guarnieri, S., Livshits, V.B.: GATEKEEPER: mostly static enforcement of secu-
rity and reliability policies for javascript code. In: 18th USENIX Security Sympo-
sium, Montreal, Canada, August 10-14, 2009, Proceedings. pp. 151�168. USENIX
Association (2009)

17. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable javascript. In: Proceedings of the 20th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, July 17-21, 2011. pp. 177�187. ACM (2011)

18. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of javascript. In: ECOOP
2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slove-
nia, June 21-25, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6183,
pp. 126�150. Springer (2010)

19. Hahn, E.: Helmet (2012), https://helmetjs.github.io/
20. Henry, J.: Typescript eslint parser (2019), https://www.npmjs.com/package/@

typescript-eslint/parser

21. Inc., F.: React (2013), https://reactjs.org/
22. Johnson, B., Song, Y., Murphy-Hill, E.R., Bowdidge, R.W.: Why don't software

developers use static analysis tools to �nd bugs? In: 35th International Conference
on Software Engineering, ICSE '13, San Francisco, CA, USA, May 18-26, 2013. pp.
672�681. IEEE Computer Society (2013)

23. Johnson, P.: 11 software bugs that took way too long to meet their maker. https:
//www.csoonline.com/article/3404334/11-software-bugs-that-took-way-too-long-
to-meet-their-maker.html (2015), CSO, From IDG Communications

24. Johnson, S.C.: Lint, a C program checker. Bell Telephone Laboratories (1977)

25. Kaur, A., Nayyar, R.: A comparative study of static code analysis tools for vulner-
ability detection in c/c++ and java source code. Procedia Computer Science 171,
2023 � 2029 (2020)

26. Keinänen, M.: Creation of a web service using the MERN stack (2018)

27. Kovalyov, A.: Jshint (2011), https://www.jshint.com/, accessed: 2020-06-25
28. Meyerovich, L.A., Livshits, V.B.: Conscript: Specifying and enforcing �ne-grained

security policies for javascript in the browser. In: 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. pp.
481�496. IEEE Computer Society (2010)

29. Mitchell, J.C.: Programming language methods in computer security. In: Proceed-
ings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2001, London, UK, January 17-19, 2001. ACM (2001)

30. OWASP Foundation: OWASP Top Ten (2017)

31. OWASP Foundation: Source Code Analysis Tools (2020), https://owasp.org/
www-community/Source Code Analysis Tools

32. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358�366 (1953)

33. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4), 58�66 (2018)

34. Sharipov, I.: ruleguard: dynamic inspection rules for Go (2020), https://quasilyte.
dev/blog/post/ruleguard/

35. SonarSource: Sonarlint (2008), https://www.sonarlint.org/
36. Stack Exchange Inc.: Stack Over�ow Developer Survey 2020

37. StrongLoop: Express (2010), https://expressjs.com/
38. Team, E.: Espree (2014), https://github.com/eslint/espree
39. Team, E.: Eslint: Contributing new rules (2020), https://eslint.org/docs/

developer-guide/contributing/new-rules
40. Tómasdóttir, K.F., Aniche, M., Van Deursen, A.: The Adoption of JavaScript

Linters in Practice: A Case Study on ESLint. IEEE Trans. Softw. Eng. (2018)

41. VeraCode: State of software security: Open source edition (2020)

42. Voss, L.: npm and the future of javascript (2018), https://slides.com/seldo/
npm-and-the-future-of-javascript/, invited talk at JSConf US 2018

43. Wedyan, F., Alrmuny, D., Bieman, J.M.: The e�ectiveness of automated static anal-
ysis tools for fault detection and refactoring prediction. In: Second International
Conference on Software Testing Veri�cation and Validation, ICST 2009, Denver,
Colorado, USA, April 1-4, 2009. pp. 141�150. IEEE Computer Society (2009)

44. Wheeler, D.: Flaw�nder (2001), https://dwheeler.com/flawfinder/
45. Wing, J.M.: A Call to Action: Look Beyond the Horizon. IEEE Secur. Priv. 1(6),

62�67 (2003)

46. Zakas, N.C.: Eslint (2013), https://eslint.org/

A ESLint

A.1 How ESLint Works

ESLint builds on Node.js and can be installed through npm. After that a con�g-
uration �le is created, ESLint can be run on source �les, e.g. from the command
line or within an IDE [46]. ESLint takes as parameters which source �le to lint
and a con�guration which e.g. speci�es which rules to use.

First, ESLint parses the source �le to render an abstract syntax tree (AST)
from it. Each node in the resulting AST is a record which contains, amongst oth-
ers, the type of the syntactic element it represents (e.g. VariableDeclaration,
Identifier, FunctionDeclaration, etc.), and information about where in the
source �le the syntactic element is located (for blame assignment). In case the
information in this AST is insu�cient (e.g. when writing advanced rules), ES-
Lint lets one specify a di�erent parser from the default one (i.e. Espree [38]), to
construct an AST that stores additional information.

Next, ESLint traverses this AST to check that all rules are upheld. Each rule
in ESLint is represented by an object. A rule object maintains its own state and
exports methods which ESLint calls while traversing the AST. At each node,
both while going down and up the AST, ESLint invokes, on each rule object, a
method representing the type of the node (VariableDeclaration, etc.; see above)
and code paths (onCodePathStart, onCodePathSegmentLoop, etc.). If a rule detects
an issue, then the rule reports the issue to a context, which ESLint passes as a
parameter when it creates the rule object.

A.2 Rules

Each rule in ESLint consists of three �les3: a source �le, a test �le, and a docu-
mentation �le. Source �les2,(e.g. Figure 2), are stored in lib/rules. They have
the following format3. A source �le exports an object with two properties.

1 module.exports = { meta:meta, create:create }

The objects meta and docs have four properties.

1 meta = { docs:docs, type:string, fixable:boolean, schema:schema }
2 docs = { description:string,url:string,recommended:boolean,category:string}

In docs, description is a description of what the rule checks. url is the
URL to the rule's documentation. recommended speci�es whether this rule should
be added to the list of recommended ESLint rules (which can all be turned
on with a single option in the con�guration). category speci�es where this
rule should appear in the rules index; valid values include "Possible Errors",
"Best Practices", "Strict Mode", & "Stylistic Issues". In meta, type speci-
�es the type of the rule; valid values are "problem" for a rule that identi�es bad
behavior, "suggestion" for a rule that provides improvement suggestions, and

2 This is a slightly simpli�ed version of the original, from ESLint core.
3 Rules are not strictly required to follow this format; some deviate from it.

1 module.exports = {
2 meta: {
3 docs: {
4 description: "no returning value from constructor",
5 url: "https://eslint[...]/no-constructor-return",
6 category: "Best Practices",
7 recommended: false
8 },
9 type: "problem"

10 },
11 create: function(context){
12 const message = "Unexpected return in constructor."
13 const stack = [];
14 return {
15 onCodePathStart: function(_,node){stack.push(node)},
16 onCodePathEnd: function() {stack.pop()},
17 ReturnStatement: function(node){
18 const last = stack[stack.length - 1]
19 if (!last.parent) { return }
20 if (last.parent.type === "MethodDefinition" &&
21 last.parent.kind === "constructor" &&
22 node.parent.parent === last || node.argument
23){ context.report({ node, message }) } }}}}

Fig. 2: no-constructor-return source �le.

"layout" for a rule that provides stylistic tips. If a rule does not automatically
�x an issue, then the fixable property should be omitted. Otherwise, fixable
should be set to "whitespace" if it only a�ects whitespace, and "code" other-
wise. schema speci�es which con�guration options the rule accepts and should
be omitted if the rule accepts no such options. create, called when the rule object
is created, returns an object which contains the functions that ESLint calls while
traversing the AST (see above). The rule in Figure 2 gives an example of how a
rule can maintain state and traverse the AST. Its state is a stack of code paths,
which it uses, upon encountering a return statement, to examine the AST to see
if the statement is occurring within a constructor.

Test �les are stored in tests/lib/rules. The test �le contains sample inputs,
along with the expected result of applying the rule on said input (valid, invalid).
The unit test can then be run using the testing facility built in ESLint. Doc-
umentation �les, stored in docs/rules, are written in Markdown syntax, and
provide a description of what rules check, and how to con�gure them.

Plugins. Additional rules can be added to ESLint by downloading ESLint plu-
gins. A plugin is a collection of ESLint rules. Plugins are routinely created by
individuals and organizations, and shared as packages on npm. At present, npm
contains thousands of ESLint plugins, each of which often contains tens of rules.

