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Abstract. Analysis of genetic data opens up many opportunities for medical and
scientific advances. The use of phenotypic information and polygenic risk scores
to analyze genetic data is widespread. Most work on genetic privacy focuses on
basic genetic data such as SNP values and specific genotypes. In this paper, we
introduce a novel methodology to quantify and prevent privacy risks by focusing
on polygenic scores and phenotypic information. Our methodology is based on
the tool-supported privacy risk analysis method Privug. We demonstrate the use
of Privug to assess privacy risks posed by disclosing a polygenic trait score for
bitter taste receptors, encoded by TAS2R38 and TAS2R16, to a person’s privacy in
regards to their ethnicity. We provide an extensive privacy risks analysis of different
programs for genetic data disclosure: taster phenotype, tasting polygenic score,
and a polygenic score distorted with noise. Finally, we discuss the privacy/utility
trade-offs of the polygenic score.

1 Introduction

Genetics strongly influence phenotypes, the observable traits of humans and other species.
Since the successful sequencing of a human genome in 2003, many attempts have been
made to develop new methods utilizing this vast information. Research focuses on under-
standing the association between phenotypic and genetic information (see, e.g., [18,20]
on taste reception genes). Polygenic risk scores are developed to summarize the effect of
genes on phenotype, especially in medical applications [21]. They are typically defined
as a weighted sum on genetic data related to a single phenotype trait. Unfortunately, the
use of a genotype in a polygenic score could disclose information about other conditions
it is associated with. For example, the Apolipoprotein E (ApoE) gene shows both strong
correlation with cardiovascular disease risk and Alzheimer’s disease risk [15].

Researchers have demonstrated privacy risks associated with genetic data [16]. For
instance, an individual’s genomic data can be used to find out predisposition to disease,
e.g., using the phenotypic information or polygenic scores mentioned above. A person’s
genome is based on their ancestry, with the addition of any mutations acquired by that per-
son or their ancestors [7]. As a consequence, disclosing genetic data poses privacy risks,
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not only for its owner, but also her relatives and ancestors [11]. On a population level (not
necessarily for individuals), knowledge about an individual’s ancestry allows to make
predictions about their ethnicity. The distribution of genotypes for a population is based
on ancestry, therefore genetic data correlates to the ethnicity of individuals (e.g., [18]).
This poses a privacy risk for individuals who may be subject to discrimination.

Most privacy risk analyses and anonymization mechanisms in genetics focus on
basic genetic data—such as SNP values or specific genotypes [16]. These approaches
have been proven to be very effective in anonymizing and quantifying different kinds
of privacy risks such as reidentification, kin privacy, or health care privacy [5,8,9,14].
See Sect. 8 for a detailed discussion of related works.

In this paper, we propose to quantify and prevent privacy risks by focusing on
polygenic scores and phenotypic information. To the best of our knowledge, this is
the first work to explore this viewpoint to tackle genetic privacy. Our work does not
aim to replace existing methods, but to complement them through this new lens. This
work is motivated by the observation that genetic data is often disclosed in terms of
phenotypic information and polygenic scores. So it is directly applicable to the way
geneticists process and disclose information. We build on top of the privacy risk analysis
method PRIVUG [17]. Given a disclosure program (e.g., the program to compute a
polygenic score), a probabilistic model of attacker knowledge and an output of the
program, PRIVUG computes the attacker posterior knowledge that can be used to assess
privacy risks. We demonstrate the use of PRIVUG to assess the privacy risks posed by
disclosing a polygenic trait score for the TAS2R38 and TAS2R16 taste receptor genes.
We quantify the risks to a person’s privacy in regards to their ancestry and thereby derived
their likely ethnicity. The data and programs in this case study are selected to enhance
readability and to serve as a template to apply our methodology. The methodology we
present can be applied to phenotypes and polygenic scores working on any kind of
sensitive genetic data. In summary, our contributions are:

– A methodology to analyze privacy risks of phenotypic information and polygenic
scores based on the PRIVUG method.

– A demonstration of the methodology on a real case study based on the TAS2R38
and TAS2R16 taste receptor genes and their correlation with ethnicity.

– An extensive privacy risks analysis of different programs for genetic data disclosure:
taster phenotype, tasting polygenic score, and a polygenic score distorted with noise.

– An analysis of the trade-off between privacy and utility of the polygenic score.

The data and source code of all experiments are available at: https://github.com/
itu-square/privug-genetic-privacy.

2 Background

Taster Genes. The genotype is the genetic description of an organism made up of the
specific alleles of genes an individual has inherited. A phenotype is an observable trait
of an organism, in our case, tasting bitterness or sourness. Several studies found corre-
lations between TAS genotypes (a fragment of the entire genotype of humans) and the
perception of chemical substances [2,4,6,18]. TAS2R38 is predominantly responsible
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for detecting bitterness [2,18] and TAS2R16 is associated with detecting sourness [4].
Together they define the taster phenotype explored in this study. A haplotype is (a part of)
a genotype containing chromosomes from one parent only. In this paper, we focus on the
pairs of haplotypes that compose the genotypes of TAS2R38 and TAS2R16. We do not
consider more basic elements such as alleles. The haplotypes of TAS2R38 are PAV, AVI,
AAV, AVV, PAI, PVI, AAI and PVV. The haplotypes of TAS2R16 are HAP-CD, HAP-A,
HAP-B. Thus, a given individual has a pair of haplotypes for each TAS2R genotype.
Data Privacy Analysis with PRIVUG. PRIVUG is a tool-supported method to explore
information leakage properties of data analytics programs [17]. PRIVUG assumes that
a program transforms an input dataset into an output, which is subsequently disclosed
to a third party called an attacker. PRIVUG does not require a dataset, but starts with a
probabilistic model of the attacker’s knowledge. The model is analyzed together with
the program to study the risks of inference of sensitive information.

Let I, O denote sets of inputs and outputs of a program. Let D(I) be a distribution
over a set, in this case the set of inputs. We write I ∼ D(I) to denote a random variable
over the set of inputs. The PRIVUG method is divided in the following five steps:

Step 1: Attacker’s Prior Knowledge. We model what the attacker knows about the
input before observing the output of the program as a belief distribution. For a program
that receives an integer (I ≜ Z), this could be a distribution U(−10, 10), a discrete
uniform distribution on integers between -10 and 10, which models an attacker knowing
only that the input is between −10 and 10 but not more. We write p(I ) for the probability
distribution associated with the random variable I representing the input to the program.

Step 2: Interpret the Program. We run the program not on a concrete input data set
from I, but on the belief distribution representing the attacker’s knowledge about the
input. For example, the following program takes as input an integer and returns its value
perturbed by a Laplacian distribution with mean 0 and scale 1:

def program(x: int): return x + stats.laplace.rvs()

We transform this program into a probabilistic one taking a distribution over inputs and
run it on the attacker’s knowledge distribution:

def program(x: Dist(int)): return x + stats.laplace.rvs()

where Dist(int) denotes a distribution over integers (D(Z)). The attacker’s knowledge
together with the program define the joint distribution over inputs and outputs: p(I ,O).

Step 3: Observation. Optionally, we can assume that the output of the program, or
some information about it, has been disclosed to the attacker (otherwise we reason about
all possible input data sets). For instance, assume that the attacker learned that the output
of the program was greater than 7. Adding this observation amounts to conditioning the
joint distribution, e.g.switching from p(I ,O) to p(I ,O | O > 7).

Step 4: Posterior. We approximate the joint distribution using standard Markov Chain
Monte Carlo (MCMC) methods. In this paper, we use the PyMC3 [19] library.

Step 5: Posterior Analysis. We query the inferred distribution to study the posterior
knowledge of the attacker. To this end, we can query for probabilities and compute sum-
mary statistics of the distributions (mean, variance, etc.), and standard leakage measures
such as entropy, KL-divergence, mutual information, and Bayes vulnerability [1].
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Fig. 1: The case study overview.

3 The Case Study

A data analyst wants to disclose data about the ability of study participants to taste wine.
Such data is commonly released [2,4,6,18]. To compute the tasting information, the
analyst uses the information about the taste receptor genes TAS2R38 and TAS2R16.
Figure 1 includes an example of data for a single participant in the box labeled Participant
i, including haplotype pairs PAV/AVI for TAS2R38 and HAP-A/HAP-A for TAS2R16. The
analyst considers the following three options of disclosing the data.
1. Taster/Non-taster binary phenotype. This program labels participants as taster, who
can taste bitterness and sourness (having relevant haplotypes of TAS2R38 and TAS2R16),
or non-taster. For Participant i the output of this program is non-taster on both accounts.
2. Wine tasting score / polygenic score. Combines TAS2R38 and TAS2R16 haplotype
pairs to compute a genetic trait score. The polygenic score is based on biochemical tests,
published in [2], to determine the response of TAS2R38 haplotypes to bitter substances,
and the presence TAS2R16 taster haplotypes. The larger the score, the better the wine
tasting abilities of the participant. For Participant i the program output is 9.31.
3. Wine tasting score with noise. This program adds noise to the output of the previous
one with the goal of decreasing privacy risks. For Participant i, it outputs 9.31 plus a
random perturbation ν drawn from a Normal distribution with mean 0 and standard
deviation σ. The value of σ determines the amount of noise. In Sect. 7 we evaluate the
impact of different values of σ on privacy risks and utility.
The first two disclosure programs are standard methods to aggregate and share genetic
data. They are not designed with privacy protection in mind. The last method attempts to
enhance privacy by adding random noise to the wine tasting score.
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TAS2R38 TAS2R16
PAV AVI AAV AVV PAI PVI AAI PVV HAP-CD HAP-A HAP-B

African .5076 .4270 .0248 .0032 .0018 .0007 .0339 .0010 .1511 .8355 .0133
Asian .5076 .3518 .0061 .0008 .0000 .0015 .1322 .0000 .0011 .6309 .3679
European .6451 .3531 .0000 .0017 .0000 .0000 .0000 .0000 .0000 .6810 .3189
American .4566 .4922 .0356 .0049 .0032 .0003 .0055 .0017 .0000 .8105 .1894

Table 1: TAS2R38 and TAS2R16 haplotype probability for each ethnicity, p(Hr38 |E)
and p(Hr16 |E), respectively [18,20]

In this case study, the ethnicity of participants is considered sensitive information.
Note that our programs do not use ethnicity as input. Still, their output could be used to
learn about ethnicity using a linking attack. Genetic information is correlated with ethnic-
ity, and, in this case, the attacker may conclude that Participant i has European ethnicity.

We consider an information-theoretical attacker that has access to: i) publicly avail-
able aggregated data correlating TAS2R38, TAS2R16 and ethnicity [2,4,6,18], in partic-
ular Tbl. 1; ii) the source of the disclosure program, and iii) the program output released
by the data analyst. This is depicted in Fig. 1 as lines connecting those elements to the
attacker model at the bottom. The goal of the attacker is to infer the ethnicity of a study
participant. There are no bounds on the computational resources available to the attacker.

Our objective is to apply the PRIVUG method to reason about this case, to expose
privacy risks involved in releasing genetic data, as well as to encourage geneticists to
consider PRIVUG (and similar tools) as an aid in decision making.

4 Modeling

In the following, we use H to denote the set of TAS2R38 haplotypes: PAV, AVI, AA,
etc. (second row in Tbl. 1). We use E to denote the set of ethnicities (first column in
Tbl. 1). We use H and E to denote the corresponding random variables. We consider
an attacker who, a priori, makes no assumptions about the ethnicity of the participant.
In other words, before observing the output of the program, the attacker considers all
ethnicities in Tbl. 1 to be equally likely. For convenience, we map each ethnicity to an
element in N0. The prior is uniform over the ethnicities, i.e. E ∼ U(0, 3).

For the taste receptor haplotypes we consider an attacker informed by publicly
available population genetics studies [18,20] containing information about the correlation
between ethnicity, TAS2R38, and TAS2R16. Given an ethnicity E , we use r38E and
r16E to refer to vectors composed by columns 2-9 and columns 10-12 in row E of
in Tbl. 1, respectively, so we have that H r38 ∼ Cat(r38E ) and H r16 ∼ Cat(r16E ),
where, for example, Cat(r38E ) is a categorical (discrete) distribution defined by vector
r38E . Here again, each haplotype value is mapped to an element in N0.

Figure 2 shows the joint distributions of ethnicity and haplotype pairs representing
the beliefs of the attacker. For instance, the top-left cell (left graph) shows that the
probability of African ethnicity and the haplotype pair PAV/PAV is 0.07. For TAS2R38,
this prior assigns high probability to haplotype pairs PAV/PAV and PAV/AVI—as [18]
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Fig. 2: Priors on ethnicity, and haplotype pairs. Left: TAS2R38. Right: TAS2R16.

established that PAV and AVI are common haplotypes in all tested populations. For
TAS2R16, the haplotype pairs HAP-A/HAP-A and HAP-A/HAP-B are most likely, due
to the common occurrence of HAP-A [20].

We now investigate and compare the privacy risks of the three disclosure programs
from the previous section. All these work on pairs of haplotypes: we use (Hr38

0 , Hr38
1 )

to refer to each TAS2R38 haplotype and (Hr16
0 , Hr16

1 ) for TAS2R16.
Taster/non-taster binary phenotype. We consider a disclosure program that maps
TAS2R38 and TAS2R16 to binary phenotypes: taster, non-taster. For TAS2R38, the
haplotype pair AVI/AVI corresponds to the non-taster phenotype, and the remaining hap-
lotype pairs to taster. For TAS2R16, the haplotype pair HAP-CD/HAP-CD corresponds
to the non-taster phenotype, and the remaining haplotype pairs to taster:

Phr38nt ≜
∧

i∈{0,1}
Hr38

i = AVI Phr16
nt ≜

∧

i∈{0,1}
Hr16

i = HAP-CD

Figure 3 shows their Python implementations. Both programs take a haplotype pair and
return a Boolean stating whether the pair corresponds to a non-taster.
Wine tasting score / polygenic score. The polygenic score is a linear combination of
genotype weights and haplotype weights:

Lgs ≜ αr38 · gtr38 (H
r38
0 , Hr38

1 ) + αr16 · gtr16 (H
r16
0 , Hr16

1 )

The function gtj : H×H → R is the genotype weights; it assigns a score modeling the
impact on tasting ability of a pair of haplotypes. The coefficient αj ∈ R is the gene
weight; it assigns a score modeling the influence of the gene on the tasting score. We
set the weight values based on the biochemical test [2], for the response of TAS2R38 to
bitter substances, and the presence TAS2R16 taster haplotypes. Figure 4 shows Python
code for the polygenic score. The implementation rounds the value to 2 decimal points.
This is how polygenic scores are normally disclosed (and perceived by the attacker).
Wine tasting score with random noise. Here we consider a polygenic score aimed at
reducing privacy risks. We use a normal distribution with mean 0 and different values of
standard deviation to generate random noise:

ν ∼ N (0, σ) NLgs ≜ Lgs + ν
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def non_taster_TAS2R16(h1,h2): return h1==HAP-CD and h2==HAP-CD
def non_taster_TAS2R38(h1,h2): return h1==AVI and h2==AVI

Fig. 3: Taster disclosure program for TAS2R16 (line 1) and for TAS2R38 (line 2)

def linear_gs(r38_h1,r38_h2,r16_h1,r16_h2):
l_gs = α_r38*gt_38(r38_h1,r38_h2) + α_r16*gt_16(r16_h1,r16_h2)
return round(l_gs,2)

Fig. 4: Wine tasting linear polygenetic score disclosure program

def noisy_linear_gs(r38_h1,r38_h2,r16_h1,r16_h2):
nl_gs = linear_gs(r38_h1,r38_h2,r16_h1,r16_h2) + np.random.normal(0,σ)
return round(nl_gs,2)

Fig. 5: Wine tasting linear polygenetic score disclosure program with random noise

Figure 5 shows a Python implementation. The function np.random.normal(0,σ) uses the
NumPy [10] library to sample from a normal distribution with mean 0 and standard
deviation σ. We do not fix the value of σ, to study the effect of increasing values in Sect. 7.

5 Privacy Risk Metrics

Output privacy risk. We evaluate the privacy risk associated with disclosing a concrete
output of the disclosure method. To this end, we look at the posterior distribution of
ethnicity given a concrete program output. Let O denote a random variable modeling the
output of any of the programs in Sect. 4, we compute

p(E | O = v) for a concrete output v in the domain of O.

If the probability for an ethnicity is high, then it means that the attacker can learn with
high probability the ethnicity of the individual. Output privacy is useful when a data
analyst is trying to decide whether or not to disclose a program output. For instance,
in the taster phenotype program for TAS2R38, suppose that p(E = African | Phr38 =
taster) = 1. Now consider a data analyst that after running the program obtains taster.
Then, releasing that output also discloses the individual’s African ethnicity.
Program privacy risk. To evaluate the overall privacy risks of a program, we use a metric
that accounts for the probability of each output, p(O). Note that output privacy measures
risks disregarding how likely the output is. Naturally, combining output privacy with the
probability of the output yields the joint distribution of ethnicities and outputs,

p(E | O)p(O) = p(E,O).

Program privacy is useful for data analysts assessing risks before computing a concrete
output. High values indicate both a high risk of leaking the individual’s ethnicity and
that it is likely that the leak may occur. Suppose that, for the taster TAS2R38 phenotype
program, we have that p(E = American,Phr38 = taster) = 0.8. That is, if the program
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outputs taster and the ethnicity of the individual is American with probability 0.8, inde-
pent of the input. Intuitively, this program has high privacy risks for Americans. Ideally,
the program should distribute probability among ethnicities and outputs uniformly.
Privacy risk scores. These scores aim to summarize the output and program privacy
risks into a single score (real value). We use two privacy risk metrics to summarize
privacy risks into a score: maximum output privacy and Bayes vulnerability [1].
Maximum output privacy. This metric summarizes the results of output privacy risks. It
reports the maximum output privacy for all possible program outputs. That is,

max
e∈E,o∈O

p(E = e|O = o)

Maximum output privacy is a pessimistic upper bound on privacy risks, as it is
pessimistic because it does not take into account the probability of the output. A program
may have large maximum output privacy for an output that is very unlikely. Recall
the example above where p(E = African | Phr38 = taster) = 1 and P (Phr38 =
taster) = 0.01. Here the maximum output privacy equals 1. Note that we do not need
to explore other outputs; as 1 is the maximum output privacy risk. This metric does not
indicate what/how many outputs or ethnicities produce the maximum output privacy.
However, since maximum output privacy is an upper bound on privacy risks, a low value
of output privacy does indicate low risks for all outputs.
Bayes vulnerability. This metric summarizes program privacy risks. Bayes vulnerabil-
ity [1] measures the expected probability of correctly guessing the ethnicity by observing
the output of the program. Bayes vulnerability is defined as

V =
∑

o∈O

max
e∈E

p(E = e,O = o).

A high value of Bayes vulnerability implies high privacy risks. Bayes vulnerability does
not indicate what ethnicity is at risk or what output causes the leak. Bayes vulnerability is
especially useful when comparing disclosure programs. The joint distribution (program
privacy risk) may consist of a large number of ethnicity/output pairs, making it tedious
to compare among several programs. Furthermore, Bayes vulnerability can be used
as a first indicator of privacy risks. In case Bayes vulnerability is high, then the joint
distribution may be explored to find the ethnicities at high risk.

6 Utility Metrics

Absolute difference. We consider the absolute difference of the wine tasting score (real
output) and the wine tasting score with noise (distorted output), i.e., |Lgs − NLgs|. A
value of 0 indicates perfect utility, the larger the value the worse the utility. Since our
analysis estimates distributions p(Lgs) and p(NLgs), we actually analyze the distribution
of the absolute difference, p(|Lgs − NLgs|).
Error bound probability. As for privacy risk metrics, now we define a score that sum-
marizes utility. Specifically, we consider the probability that the absolute difference is
within a bound δ, formally, p(|Lgs − NLgs| < δ). The value δ defines the amount of
error that the analyst considers acceptable. For this paper, we (arbitrarily) set to study
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δ ∈ {0.1, 0.5, 1}, but our analysis can be applied for any δ. High error bound probability
indicates high utility, with 1 being perfect utility and 0 worst utility.

7 Analysis & Results

In this section, we discuss: i) the quality of the inferred posterior distribution; ii) privacy
risks of each disclosure program using the privacy risk metrics presented in Sect. 5; and
iii) the utility evaluation for the disclosure programs adding random noise.
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Fig. 8: Utility/privacy trade-off for all polygenic scores for different error bounds.

7.1 Posterior inference

To estimate the joint posterior distribution, we use a Metropolis-within-Gibbs sampler
optimized for Categorical variables [3,19]. The model in Sect. 4 is composed of ethnicity
and haplotype variables which are in a nominal (categorical) scale. We generate 100k
samples with a burn-in period of 50k samples. The resulting posterior distribution shows
good sampling/convergence diagnosis [3]: Estimated Sample Size (ESS) of at least 50k,
a Markov Chain Standard Error (MCSE) below 0.15, and R̂ of 1.0 for all parameters.
This diagnosis indicates that the inferred posterior has converged and it is accurate.

7.2 Output Privacy Risk

Binary tasting phenotype. The last two heatmaps in Fig. 6 (top-left) show the output pri-
vacy results for the tasting phenotype program, for TAS2R38 and TAS2R16, respectively.
We observe that the non-taster output carries higher privacy risks in both cases. For
TAS2R16, it implies completely giving away the ethnicity of the individual. Interestingly,
the taster output is (mostly) uniformly distributed among ethnicities. This means that in
both cases it is safe to publish that the individual is a taster.
Wine tasting score. Figure 6 (middle) shows the output privacy risk of the wine tasting
score. For more than half of the possible outputs, the African ethnicity is at high risk,
i.e., output privacy risk close to 1. European is the second most vulnerable ethnicity.
The American ethnicity shows high risk only for 3 possible outputs. The Asian ethnicity
shows low risk for all outputs. For the outputs 9.31 and 17.37 the output privacy risk
of each ethnicity is very close to 0.25 (the same as in the prior). This means that the
attacker would not learn much by observing this output. For data analysts interested in
output privacy risk, we recommend to only disclose the output if it equals 9.31 or 17.31.
Wine tasting score with random noise. Figure 9 (top) shows the output privacy results of
the wine tasting score with random noise for an increasing noise level σ from 0.1 to 5.

For σ = 0.1, Africans and Europeans have higher output privacy risk. Due to the
large number of outputs, now we discuss ranges of possible outputs. A gray homogeneous
color indicates that risk is distributed uniformly across ethnicities. We observe this effect
in the range (9.35, 9.40) and around 17.33. These intervals are close to the low risk
values in the wine tasting score without noise. Values of σ equal to 0.5 and 1 increase the
width of the uniformly distributed areas. This effect also reduces the size of solid black
ranges, meaning that output privacy improves, especially for Africans and Europeans.
For values of σ greater than 1 the above effect is more pronounced. As σ increases, a
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Fig. 9: Output privacy risk (top) and program privacy risks (bottom) for polygenic scores
with random noise for increasing σ.

large uniform gray range (with low output privacy risks) covers most of the spectrum of
output values. For σ = 2 and σ = 5, outputs (approximately) in the range (9.5, 11.5)
show good output privacy. We also observe that, in these cases, the border regions (low
and high output values) show high contrast indicating high output privacy risks for some
ethnicities.
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Our results indicate that for 0 < σ < 1 outputs in the regions close to 9.31 and 17.37
have low output privacy risk. For 1 < σ ≤ 5, outputs in the range (9.5, 11.5) show low
output privacy risks. As expected, the larger σ the higher the privacy, but we compromise
its utility. We discuss this in Sect. 7.5.

7.3 Program Privacy Risk

Binary tasting phenotype. For TAS2R16 (Fig. 6, 2nd heatmap in top-left), we observe
that taster has the highest probability and is uniformly distributed across ethnicities. This
indicates (almost) complete absence of program privacy risks. Recall that non-taster has
very high output privacy (Sect. 7.2). Now program privacy reveals that the non-taster
output has very low probability; only 0.01. (Probability values do not add up to 1 because
they are rounded.) TAS2R38 (Fig. 6, 1st heatmap in top-left) shows similar results: Taster
is a more likely output than non-taster, and probability is distributed uniformly across
ethnicities for taster. We observe that for tasters, Europeans have slightly lower program
privacy risk than the other ethnicities. However, when the output is non-taster, Europeans
have double the program privacy risks compared to other ethnicities; with this scenario
occurring with probability 0.06. This is inline with the high output privacy risks for
Europeans and this program output, but program privacy shows that this case is unlikely.

To sum up, both binary tasting genotype programs have low program privacy risks,
with TAS2R16 offering better protection than TAS2R38.
Wine tasting score. Figure 6 (bottom) shows the program privacy risks for the wine
tasting score. We observe that only outputs 1.24, 9.31 and 17.37 have non-negligible
probability. This is useful information, as output privacy allocated high privacy risks for
Africans, but now we discover that those outputs are very unlikely. In fact, within the
high probability outputs, Africans show the lowest risk of all ethnicities. Interestingly,
the outputs with non-negligible probability coincide with some of those having low
output privacy risks, i.e., 9.31 and 17.37. As for output 1.24, although it does not exhibit
high program privacy risks, the probability for Europeans is higher than for others.

All in all, the wine tasting score shows a good level of program privacy risks.
Probability is mostly distributed across ethnicities for all likely outputs. However, this
distribution is less uniform than for the binary tasting phenotype. This is expected as the
polygenic score contains genetic information about TAS2R38 and TAS2R16. On the
contrary, the phenotype programs work on either TAS2R38 or TAS2R16.
Wine tasting score with noise. Figure 9 (bottom) shows the results of program privacy
risks for the wine tasting score with random noise. Each row displays the results for a
value of σ, starting from σ = 0.1 up to σ = 5.

In the first 3 rows (0.1 ≤ σ ≤ 1), we observe 3 distinct high probability regions.
Note that these coincide with the high probability outputs in the program privacy risks
for the wine tasting score without noise: 1.24, 9.31 and 17.37. Similarly to the score w/o
noise, program privacy reveals that most of the high risk outputs for Africans are unlikely
events. Also, program privacy is (mostly) uniformly distributed across ethnicities for the
high probability outputs. With higher program privacy risk for: i) Europeans in outputs
around 1.24, Asian and Europeans; ii) Europeans and Asians in outputs around 9.31;
and iii) Asians and Americans for outputs around 17.37. Nevertheless, these results
are positive, as there is no ethnicity with significantly higher risks. For the last 2 rows
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(2 ≤ σ ≤ 5), the 3 regions above merge into a single high probability region centered
around 10. Program privacy risks across ethnicities become more uniform as σ grows.
This is displayed as a uniform gray tone across ethnicities. This is a clear indication
of low program privacy risks. As mentioned earlier, these results must be considered
together with utility metrics. We discuss utility in Sect. 7.5.

To sum up, random noise improves the program privacy of the wine tasting score,
especially for large values of σ where privacy risks are uniformly distributed across
ethnicities. It is unclear, however, how it compares with the binary phenotype programs.
The following section, that discusses the results of program privacy scores, will allow us
to effectively compare all disclosure programs.

7.4 Privacy Risk Scores

Maximum output privacy. Figure 6 (top-right, light gray columns) shows the maximum
output privacy risk for all disclosure programs. We observe that all programs except for
Phr38 have max. output privacy risk 1. This is because they have at least one output for
which output privacy risk equals 1. As discussed earlier, this metric is quite pessimistic:
we saw in the program privacy results that most of the outputs with high output privacy
are very unlikely. Nevertheless, maximum output privacy serves as a good upper bound
on risk. Here we can see that Phr38 is close to 0.4. This means that, no matter the output,
output privacy risks will never be above this value. This may be a sufficient level of
privacy, taking into account that 0.25 is the prior probability for each ethnicity.
Bayes vulnerability. Figure 6 (top-right, dark gray columns) shows the Bayes vulnera-
bility results for all disclosure programs. Recall that Bayes vulnerability measures the
expected probability of learning ethnicity by observing the output. This metric scales
the risk in each output by the probability of the output. As a consequence, we observe
lower risk levels when compared with maximum output privacy. Interestingly, Phr16 has
a lower risk score than Phr38 (as opposed to what we observed in maximum output pri-
vacy). This is because the output with high output privacy risk in Phr16 is very unlikely.
As expected, the wine tasting score without noise has the largest Bayes vulnerability; as
it encapsulates the most information. The results show that the effect of noise reduces
the risk, but not substantially. None of the levels of noise we analyzed show lower
privacy risks than the binary tasting phenotype programs. However, the maximum Bayes
vulnerability is ≈ 0.42, which is not a very high value.

There is no universal value for perfect Bayes vulnerability. Companies/institutions
may fix values for Bayes vulnerabilities based on their privacy requirements. For illustra-
tive purposes, we (arbitrarily) set on a value no more than 0.35 Bayes vulnerability, i.e.,
at most 0.1 more than the prior. Then, only the tasting phenotype programs and wine
tasting score with random noise and σ ≥ 0.5 are considered privacy preserving.

7.5 Utility

Absolute distance distribution. Figure 7 (left,center) shows the absolute distance distri-
bution between the wine tasting score with and without noise for different values of σ.
The results are split into two figures to better appreciate the High Density Interval (HDI)
of the distributions; note the difference range values for x and y axes. For 0.1 ≤ σ ≤ 1
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(left plot), all distributions have their mode close to 0 and the HDI ends around 1 (or 1.5
for σ = 1). This indicates a small introduced error. For the right plot (σ > 1), the mode
is close to 0 as well, but the HDIs are much wider: The HDI ends at 5 for σ = 2, at 10
for σ = 5 and at 15 for σ = 10.

The extent to which the error in the linear score is admissible is problem dependent.
However, this analysis shows the large amount of distortion that values of σ > 0.5
introduce. Fixing a maximum level of error would be helpful in deciding what programs
have acceptable error. The next metric explores this.
Error bound probability. Figure 7 (right) shows the error bound probability results for
increasing value of σ in the wine tasting score program with noise for error bound values
δ ∈ {0.1, 0.5, 1}. We consider these values acceptable given the scale of the wine tasting
score. However, the value of δ is application dependent, and our method can be used
with any value of δ. The plots show the 90% probability boundary, which we consider
sufficient confidence. Stronger requirements can be set, e.g., 95% or even 100%.

For all δ values, we observe a sharp exponential decay in utility as σ increases. For
δ = 0.1, utility decays below 20% even for σ = 0.5. For σ > 0.1, we observe worse
utility: with values very close to 0. This indicates that only values of σ close to 0.1
are acceptable. Increasing the error bound to δ = 0.5 yields better utility. Yet no value
σ > 0.1 meets our requirements. It is only for δ = 1 that σ = 0.5 meets our utility
requirements. As for the other cases, no value σ > 0.5 has acceptable utility.

Adding noise decreases privacy, but it is not a panacea. The results in this section
show that we can only add a small amount of noise, if we want to preserve utility.
Privacy/Utility trade-off. We conclude by putting together the privacy and utility scores.
Figure 8 plots the error bound probability (utility) and Bayes vulnerability (privacy). We
analyze different levels of δ, as before.

For δ = 0.1 (left in Fig. 8), we observe that no level of noise meets the utility
requirements. Only Lgs (wine tasting score w/o noise) is above the 90% line. NLgs with
σ = 0.5 shows a utility level around 60% with almost the same Bayes vulnerability.
In other words, we gain no privacy and deteriorate utility to an unacceptable degree
(for δ = 0.1). Reducing the utility requirements to δ = 0.5 (center in Fig. 8) includes
σ = 0.1 as an acceptable program. But, again, we gain almost no privacy protection.
Finally, for δ = 1, NLgs with σ = 0.5 meets the utility requirements. In this case, Bayes
vulnerability is reduced by 0.06 (from 0.43 to 0.37). This privacy score is still far from
the prior (i.e., 0.25), but it is a significant improvement.

Data analysts may use these results to make an informed decision on the programs
to disclose the wine tasting score. Given our results and privacy/utility requirements
we set forth, the best choice would be NLgs with σ = 0.5. That said, the most valuable
takeaway is the analysis process and privacy/utility information we described.

8 Related Work

There exists a wide spectrum of research on genetic privacy [16]. Below we cover the
most relevant work in the context of this paper.

Cai et al. [5] develop a re-identification attack based on Genome-Wide Association
Studies (GWAS). These studies are applied to human genomic data to understand disease
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associations. The presented algorithm scales well for realistic GWAS datasets. They show
that the number of re-identified individuals grows with number of released genotypes.
Gymrek et al. [7] demonstrate re-identification risks by combining haplotype information
with demographics such as age and state. In particular, they analyze the probability of
re-identifying US males. Our work focuses on privacy risks associated to phenotypes
and polygenic scores instead of working directly on genotypes. Also, we focus on the
problem of inferring sensitive data (ethnicity) as opposed to re-identification.

Gürsoy et al. [8] study the probability of inferring sensitive phenotypes, i.e., pheno-
types the victim wants to keep secret. They consider an attacker with access to public
studies on the correlation between genotypes and sensitive phenotypes. Given the geno-
type of a victim, they compute the probability of learning the sensitive phenotypes. The
authors propose a data sanitation protocol for genotypes that minimizes the probability
of learning sensitive phenotypes. Similarly, Harmancie and Gerstein [9] study privacy
risks on genomic deletions on signal profiles. Genomic deletions may enable attacker
to infer sensitive phenotypes via public statistics on the correlation between deletions
and phenotypes. The authors propose an anonymization method based on removing dips
in signal profiles. These works tackle the problem of inferring sensitive phenotypes from
genotype data. Instead, we quantify and protect against inferring sensitive data from
public polygenic scores or phenotypes.

Humbert et al. [11,13] propose a probabilistic model to infer Single Nucleotide
Polymorphism (SNP) values. They use an inference algorithm (belief propagation or
Bayesian inference) to estimate the distribution of unknown SNP values from information
about observed SNPs, genomic data of family members, familial relationships, etc.
The authors also define health privacy scores based on SNP values. Anonymization is
performed by masking specific SNPs. They further propose an optimization algorithm
that determines the SNP to mask to minimize risks in the aforementioned model [12]. In
this context, Humbert et al. [14] have developed a tool for communicating and raising
aware of kin privacy to lay users. These works focus on SNP information to quantify
privacy risks, we instead target polygenic scores and phenotypes.

9 Conclusion

Polygenic risk scores are typically defined as a weighted sum on genetic data related to
a single phenotype trait. They are used to summarize the effect of genes on phenotypes,
both to inform the individual patient and to anonymize results for publication. As
discussed above, any disclosure of genetic data including polygenic scores is associated
with the risk of re-identifying individuals or to find out a predisposition to a disease.

In this paper, we have introduced an approach to quantify and prevent privacy risks
by focusing on polygenic scores and phenotypic information. We believe that this is
the first work to explore this viewpoint to tackle genetic privacy. Building on top of the
privacy risk analysis method PRIVUG [17], we compute the attacker posterior knowledge
from a program to compute the polygenic risk score, a probabilistic model of attacker
knowledge about the individuals covered and populations, and an output of the program.

Our approach aims at supporting existing methods with a novel way to measure the
risk of privacy violations. We have demonstrated its application on a polygenic trait score



16 R. Pardo et al.

for the TAS2R38 and TAS2R16 taste receptor genes. We have shown how to quantify
the risks for a person’s privacy in regards to their ancestry and thereby derived their
likely ethnicity. While the data and programs in this case study were selected to enhance
readability, our methodology can be applied to phenotypes and polygenic scores working
on any kind of sensitive genetic data.

References
1. Alvim, M.S., et al.: The Science of Quantitative Information Flow. Information Security and

Cryptography, Springer (2020)
2. Behrens, M., et al.: Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter

taste perception. Chem. Senses 38, 475–484 (2013)
3. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of markov chain monte carlo. CRC

(2011)
4. Bufe, B., et al.: The human TAS2R16 receptor mediates bitter taste in response to β-

glucopyranosides. Nature Genetics 32(3), 397–401 (2002)
5. Cai, R., Hao, Z., Winslett, M., Xiao, X., Yang, Y., Zhang, Z., Zhou, S.: Deterministic identifi-

cation of specific individuals from GWAS results. Bioinform. 31(11), 1701–1707 (2015)
6. Carrai, M., et al.: Association between taste receptor (TAS) genes and the perception of wine

characteristics. Scientific Reports 7(1) (2017)
7. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying personal genomes

by surname inference. Science 339(6117), 321–324 (2013)
8. Gürsoy, G., et al.: Data sanitization to reduce private information leakage from functional

genomics. Cell 183, 905–917 (2020)
9. Harmanci, A., Gerstein, M.: Analysis of sensitive information leakage in functional genomics

signal profiles through genomic deletions. Nature Communications 9(1) (2018)
10. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020)
11. Humbert, M., Ayday, E., Hubaux, J., Telenti, A.: Addressing the concerns of the lacks family:

quantification of kin genomic privacy. In: CCS. pp. 1141–1152. ACM (2013)
12. Humbert, M., Ayday, E., Hubaux, J., Telenti, A.: Reconciling utility with privacy in genomics.

In: Workshop on Privacy in the Electronic Society, WPES. pp. 11–20. ACM (2014)
13. Humbert, M., Ayday, E., Hubaux, J., Telenti, A.: Quantifying interdependent risks in genomic

privacy. ACM Trans. Priv. Secur. 20(1), 3:1–3:31 (2017)
14. Humbert, M., Didier, D., Mauro, C., Kévin, H.: KGP meter: Communicating kin genomic

privacy to the masses. In: EuroS&P. IEEE (2022)
15. Lumsden, A.L., et al.: Apolipoprotein E (APOE) genotype-associated disease risks: a

phenome-wide, registry-based, case-control study utilising the UK biobank. EBioMedicine
59(102549) (2020)

16. Naveed, M., Ayday, E., Clayton, E.W., Fellay, J., Gunter, C.A., Hubaux, J., Malin, B.A., Wang,
X.: Privacy in the genomic era. ACM Comput. Surv. 48(1), 6:1–6:44 (2015)

17. Pardo, R., et al.: Privug: Using probabilistic programming for quantifying leakage in privacy
risk analysis. In: ESORICS. LNCS, vol. 12973. Springer (2021)

18. Risso, D.S., et al.: Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic
evolutionary proposal. Scientific Reports 6(1) (2016)

19. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in Python using PyMC3.
PeerJ Comput. Sci. 2, e55 (2016)

20. Soranzo, N., et al.: Positive selection on a high-sensitivity allele of the human bitter-taste
receptor TAS2R16. Current Biology 15(14), 1257–1265 (2005)

21. Torkamani, A., Wineinger, N.E., Topol, E.J.: The personal and clinical utility of polygenic
risk scores. Nature Reviews Genetics 19(9), 581–590 (2018)


