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ABSTRACT

Governments and businesses routinely disclose large amounts of
private data on individuals, for data analytics. However, despite at-
tempts by data controllers to anonymise data, attackers frequently
deanonymise disclosed data by matching it with their prior knowl-
edge. When is a chosen anonymisation method adequate? For this,
a data controller must consider attackers befitting their scenario;
how does attacker knowledge affect disclosure risk?

We present a multi-dimensional conceptual framework for as-
sessing privacy risks given prior knowledge about data. The frame-
work defines three dimensions: distinctness (of input records), in-
formedness (of attacker), and granularity (of anonymisation pro-
gram output). We model three well-known types of disclosure risk:
identity disclosure, attribute disclosure, and quantitative attribute
disclosure. We demonstrate how to apply this framework in a health
record privacy scenario: We analyse how informing the attacker
with COVID-19 infection rates affects privacy risks. We perform
this analysis using Privug, a method that uses probabilistic program-
ming to do standard statistical analysis with Bayesian Inference.

CCS CONCEPTS

• Security and privacy → Data anonymization and saniti-

zation; Privacy protections; • Mathematics of computing →
Bayesian computation; Information theory; • Applied com-

puting → Health informatics.
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1 INTRODUCTION

Motivation. Privacy concerns of individuals are routinely violated
by businesses and governments [2–4, 17]. With the emergence of
big data analytics, these entities increasingly collect and disclose
large quantities of personal data, for public-good and profit. In
response, several regulations have emerged which call for appro-
priate measures for data protection, including anonymisation of
personal data [25, 27, 28]. Unfortunately, such measures are non-
trivial to implement; seemingly anonymised data frequently gets
deanonymised, after being published. This has already resulted in
the disclosure of medical-[2], financial-[4], travel-[3], and habit-
records [17], on millions of people. This can lead to considerable
harms: identity theft, discrimination, harassment, and more [8, 24].

The challenge faced by data controllers, is attacker knowledge.
Attackers may obtain a lot of information from domain knowledge,
personal observations, private correspondence, public media, and
datasets available online. By matching disclosed data against their
knowledge, an attacker can deanonymise poorly-anonymised data.

Many privacy protectionmechanisms exist, e.g.𝑘-anonymity [26],
𝑙-diversity [15], 𝑡-closeness [13], and differential privacy [7], which
each provide strong privacy guarantees. However, these mecha-
nisms have fixed models of attacker knowledge; if none is an perfect
fit for the scenario, then the data controller must compromise on
either privacy or utility. Furthermore, the use of these methods is
not widespread in practice [10]; instead, data controllers tend to
simply remove identifiers or aggregate data, which unfortunately
makes deanonymising records easy for attackers [2–4, 8, 17, 24].

Data controllers should quantify the privacy risks of the anonymi-
sation methods they use. Doing so is non-trivial, due to the variety
of disclosure risks that can occur [16, 29, 30]. This is even more
challenging when no concrete dataset is available for the analysis,
e.g. in the case where risks need to be estimated before said data is
collected (e.g. for data minimisation and privacy impact assessment).

Framework. We present a multi-dimensional conceptual framework
(Sect. 3) for assessing privacy risks given prior knowledge about
data. The framework defines three dimensions, along which a data
controller performs this assessment. Distinctness, a quality of the
input data, is the extent of which input data records are uniquely
identifiable. Attribute values and combinationsmay be (un)common
in the data set. Informedness, a quality of the attacker, is the extent
of which the attacker is informed about the input data, prior to
disclosure. An attacker might know only its structure, might know
detailed public statistics about records, or might even already know
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some, or most, records. Granularity, a quality of the disclosure pro-
gram, is the extent of which data has been distorted, or reduced in
resolution, during disclosure. Examples include dropping identify-
ing attributes, adding random noise, and making values coarser.

To further aid the data controller in this assessment, we model
three well-known [16, 30] types of disclosure risk, each represented
by a query. Identity disclosure is when an attacker identifies which
record belongs to a data subject. Attribute disclosure is when an
attacker learns the value of an attribute of a data subject, with-
out necessarily knowing which record belongs to the data subject.
Quantitative attribute disclosure is when an attacker changes their
belief about the value of an attribute of a data subject. These disclo-
sures are in decreasing order of severity, from disclosing a record, to
disclosing an attribute, to disclosing information about an attribute.

We demonstrate (Sect. 5 and 6) how to apply this framework to
systematically perform privacy risk analysis. First, a data controller
defines the range of each dimension in the framework. A choice
from each of these ranges yields a concrete analysis scenario. The
data controller then performs the analysis for each scenario, by
issuing their queries on it, the result of which is the disclosure risk
for that scenario. The result is a complete picture of how changes
along each dimension affect disclosure risk. We analyse each sce-
nario semi-automatically using Privug [18]. Privug (Sect. 4) is a
method that uses Bayesian inference to analyse privacy risks in
programs, in a probabilistic programming language. Note that the
framework is independent of the tools used to analyse the scenarios;
LeakWatch [1] could for instance be used instead.

Together, this constitutes a systematic approach for exploring
how prior knowledge affects privacy risk. In contrast to an ad-hoc,
unstructured exploration, a data controller now has concrete dimen-
sions, queries, and methods, for making a privacy risk assessment.

Health Data Privacy. Our approach is a significant contribution
to health data privacy. To show this, we (in our demonstration)
analyse disclosure risks associated with publishing COVID-19 in-
fection rates in Denmark. We focus on the public datasets that
Statista (www.statista.com) regularly publishes on infection rates
in the Danish population [6]. These datasets are aggregated into age
groups. Our goal is to quantify privacy risks for all age groups, and
find out which age groups are most vulnerable. Applying our concep-
tual framework, we proceed by instantiating the three dimensions.
Granularity consists of two anonymisation methods: attr_r drops
identifying attributes, and attr_g reduces the granularity of at-
tributes. Informedness consists of two attackers, who vary in how
much prior knowledge they have about infection rates. The first
attacker, uniform, knows nothing about infection rates, whereas
the second, covid19, is informed about publicly-available statistics
on the first few months of the COVID-19 outbreak in Denmark.
Distinctness consists of the 112 different age groups that we sup-
pose that attacker is trying to learn about. This yields a total of
112 ∗ 2 ∗ 2 = 448 scenarios, each of which we perform our three
queries on using Privug. The result is an extensive and detailed
analysis of privacy risks, presented in Figs. 6 to 8. Summarised:

(1) Using the uniform prior results in a worst-case overestima-
tion of identity and attribute disclosure risks for people aged
0-79, but results in an underestimation of these same risks
for people in the age group ≥ 80. (Sections 6.1 and 6.2).

(2) Reducing granularity of quasi-identifiers (e.g. age, birthday,
zip [9, 23, 26]) reduces attribute disclosure risk by at least 20%
in the covid19 prior and 10% for uniform. But doing so is
insufficient for protecting age group ≥ 80 (up to 80% attribute
disclosure risk, and only offers low protection for people
aged 0-79 (up to 50% attribute disclosure risk). (Section 6.2).

(3) Using the uniform prior results in a worst-case overesti-
mation of quantitative disclosure risks—both for ordinary
records (30 year old people) and outliers (90 year old peo-
ple). However, for the covid19 prior, the attacker learns
proportionally—the risk increases by up to 30%. (Section 6.3).

As evident by the comprehensiveness of the above results, our
approach is a significant step forward in the area of privacy risk
analysis of health records in general, especially due of pt. iii) below.

Contribution. Our contributions include:

(1) a multidimensional conceptual framework for assessing how
attacker knowledge affects privacy risk:
(a) three dimensions along which assessment is performed,
(b) model of three well-known types of disclosure risk;

(2) demonstration of how to apply this framework to perform
privacy risk analysis using probabilistic programming;

(3) approach to obtain comprehensive privacy risk results in
health data privacy using a Bayesian model of input data.

Our approach stands out in three important ways. i) We provide an
semi-automatic way to quantify well-known notions of disclosure
risks. This is in contrast to to existing works, which require a non-
negligible level of expertise to be carried out. ii) We are analysing
the performance of a anonymization method, not how vulnerable a
specific dataset is. iii) The model of the input dataset is Bayesian;
while we can model a specific input dataset, we can furthermore
model varying degrees of uncertainty about the input dataset, corre-
sponding to what an attacker could reasonably know. Notably, this
enables us to analyse data protection measures before we collect
data, à la uniform. This facilitates data minimisation, included in
several privacy regulations and guidelines (see e.g. GDPR [27], Ar-
ticle 5), and reduces disclosures resulting e.g. from server breaches.
This is in stark contrast with existing risk estimation methods,
which have to be applied on a particular dataset.

All data relevant to our demonstration, i.e. public datasets of
Danish demographics and COVID-19 infection, probabilistic mod-
els, anonymisation programs, and the complete set of results in this
paper, are available in our public repository [21].

2 MOTIVATION (PRIVACY VIOLATIONS)

The overall problem is privacy violations stemming from insuf-
ficient anonymisation of disclosed records. This problem is very
broad; to illustrate this, we present three scenarios (one in detail)
showcasing varied privacy concerns: health, personality, and loca-
tion. These examples furthermore highlight recurring elements.

Health. Consider the anonymisation of medical records. The input
data has five columns: name, zip code, birthday, sex, and diagnosis.
Consider an anonymisation algorithm (hea) which simply drops the
name column, as illustrated in Fig. 1a. Suppose that a data controller
applies this algorithm on the input data, and discloses the result.

www.statista.com
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name zip birthday sex diagnosis

Alice 2300 15.06.1956 F ill

Bob 2305 15.06.1956 M healthy

Carol 2300 09.10.1925 F healthy

Dave 2310 01.01.2000 M ill

hea−−−→

zip birthday sex diagnosis

2300 15.06.1956 F ill

2305 15.06.1956 M healthy

2300 09.10.1925 F healthy

2310 01.01.2000 M ill

(a) Health records anonymized by dropping an identifying attribute (name).

⊕

name zip birthday sex

Mark 2450 30.09.1977 M

Rose 2870 24.12.1985 F

Alice 2300 15.06.1956 F

Dave 2310 01.01.2000 M

;
Alice

is ill.

(b) Linking attack reveals Alice’s record.

Figure 1: Anonymized health record reidentified by means of a linking attack.

name zip birthday sex diagnosis

Alice 2300 15.06.1956 F ill

Bob 2770 15.06.1956 M healthy

Carol 2300 07.03.1997 F healthy

Dave 2770 01.01.2000 M ill

Eve 2300 22.05.1968 F ill

Frank 2770 23.12.1961 M healthy

Grace 2300 19.11.1991 F healthy

Harry 2770 29.08.2002 M ill

hea'−−−−−→

zip sex age diagnosis

2770 M M healthy

2770 M M healthy

2770 M Y ill

2770 M Y ill

2300 F Y healthy

2300 F Y healthy

2300 F M ill

2300 F M ill

(a) Health records anonymized by grouping values, satisfying 2-anonymity.

⊕ Alice is a middle-aged
female living in 2300. ;

Alice

is ill.

(b) Homogeneity attack reveals Alice’s diagnosis.

Figure 2: Anonymized health record’s diagnosis revealed by means of a homogeneity attack.

Suppose that users have not consented to their diagnosis being
disclosed. Despite the disclosed records being anonymised, the
diagnosis of individuals might be revealed. Suppose that you already
possess a dataset with zip codes, birthdays, sex, and, crucially, names
as shown after the "⊕" in Fig. 1b. Since zip code, birthday, and sex,
form a quasi-identifier in both datasets, a simple join of the datasets
could reveal the names of the individuals from the disclosed medical
records, thus revealing whether or not they are ill, as per the ";".

Sweeney [26] famously joined medical records disclosed by the
Group Insurance Commission (GIC) in Massachusetts, with a voter
registration list (which she acquired for $20), to reveal the health
record of the then-governor of Massachusetts. Our example is based
on this incident. This is a linking attack. A high percentage of the
population can be uniquely identified by a combination of common
demographics in this manner [9, 23]; 87% of the US population can
be uniquely identified by zip code, sex, and date of birth [26].

Sufficiently anonymising data is hard. Suppose a data controller
wishes to publish medical records with high utility, yet where
uniquely identifying a record is impossible. She applies hea' on the
input data, which drops names, replaces birthdays with age groups,
and discloses the result, as illustrated in Fig. 2a. The released data
satisfies 𝑘-anonymity (𝑘 = 2); no record can be uniquely identified.
The disclosed data has high utility; it says that all young adult (Y)
males in 2770 are ill, and all middle-aged (M) females in 2300 are
ill. However, this dataset is vulnerable. Suppose an attacker knows
that Alice is a middle-aged female living in 2300, and that her record
is in the data set. (The attacker may be a neighbour who knows
that Alice got tested.) All records matching these constraints are ill.
The attacker concludes that Alice is ill. Machanavajjhala et al. [14]
demonstrated this shortcoming of 𝑘-anonymity (and proposed 𝑙-
diversity as a remedy). This is a homogeneity attack.

Personality. Narayanan and Shmatikov [17] linked the Netflix prize
dataset, containing anonymised movie ratings of 500,000 Netflix
subscribers, with (public) profiles from IMDB. They succeeded de-
spite Netflix injecting noise into the data during the anonymisation
process. Movie watching habits and ratings reveal intimate details
of people, such as political orientation (e.g. the movie “Fahrenheit
9/11”), religious views (“Jesus of Nazareth”), and sexual orientation
(“Queer as Folk”) [17]. This is in line with results from sociology and

psychology research [12], which concludes that our movie watch-
ing habits and ratings are indicators of how we rank on the Big Five
personality factors [11]. For instance, Alice may like science-fiction
and fantasy because she is creative and adventurous, albeit reserved.
Inferring such facts from released data is an inference attack.

Location. Culnane et al. [3] showed that it only takes two data-
points to identify an individual in anonymised travel records for 15
million travel cards, disclosed by Public Transport Victoria (PTV),
Melbourne, Australia. This can be done by linking travel records
with event participation information from Facebook or meetup.com.
Revealing travel information on individuals can reveal intimate
details of people; where they work, where they sleep, whom they
travel with. Travelling frequently to the same location may reveal
health information (area has a hospital), religious affiliation (church),
sexual orientation (gay bars), or substance abuse (pusher street).

Disclosing records that depends on personal information poses a
privacy risk: an attacker may relate them with information they
already possess, and deanonymise them. Suppose you are the data
controller, faced with the task of anonymising data. How do you
know that using a certain anonymisation algorithm poses a privacy
risk? Crucially: What is a good model for attacker knowledge, and
how does informing it with realistic data influence risk analysis?

3 FRAMEWORK (DIMENSIONS, QUERIES)

How do you approach the above problem? Where do you start your
analysis, and how will you know that you have high-confidence
results? For this, we present a conceptual framework, which serves
as an analytical tool by introducing concepts which help the data
controller think about and approach this problem. Later, we will
see a concrete manner in which the data controller can solve this
problem in an semi-automated, systematic manner, using Privug.

Before we can make statements about privacy, we need to know
what kind of attackers we consider in our risk assessment. In our
conceptual framework, we assume the following threat model.

Threat model. We consider an attacker that i) has some prior
knowledge about the input dataset, ii) who knows the program,
and iii) who observes the output of the program. The goal of the
attacker is to infer additional information about the input dataset.
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• identity disclosure

• attribute disclosure

• quantitative attribute

disclosure

3 ∗ 𝑠
queries scenarios

granularity

distinctness

informedness

Figure 3: Overview of our framework (𝑠 = |𝐷 | ∗ |𝐼 | ∗ |𝐺 |).

Pt. i) encompasses a broad space of attackers, ranging from ones
that know nothing, to ones that know everything, about the input
dataset, with varying degrees of certainty. It thus subsumes attack-
ers which perform linking or homogeneity attacks. Pt. ii) is inspired
by Kerckhoff’s principle; we should not rely on the program being
obscure for privacy to be preserved, as an attacker might know (or
infer) the program. Pt. iii) similarly does not rely on the disclosed
output being obscure for privacy to be preserved (it is disclosed).

Dimensions. Our conceptual framework introduces three dimen-
sions to aid the data controller in thinking about the above problem.
Distinctness. A quality of the input data, this dimension repre-
sents the extent of which records in the input data are uniquely
identifiable. A record might be similar to many records in the input
dataset, might be unique, or anywhere in between. For instance,
in the input data of Fig. 1b, Carol is more uniquely identifiable
than Alice with respect to age, since Alice shares her age with Bob

(whereas Carol shares an age with no-one). In the personality exam-
ple, viewers that watch really obscure movies are more identifiable
than viewers that watch mainstream movies. Finally, in the loca-
tion example, travellers that travel to odd locations at odd hours
are more identifiable than travellers that travel on main transport
routes in rush hour. Analysing with respect to varying degrees of
distinctness enables the data controller to evaluate the extent of
which the disclosure program protects outliers in the input data.
Informedness.A quality of the attacker, this dimension represents
the extent of which the attacker is informed about the input data,
prior to disclosure. For instance, in Fig. 1b, the attacker knew the zip,
birthday and sex of Alice and Dave, whereas in Fig. 2, the attacker
knew the zip and sex of Alice, and that she’s middle-aged. In the per-
sonality example, the attacker knew which movies users had rated
on IMDB, and in the location example, the attacker knew which
events people had participated in. Whereas these are examples of
the attacker knowing things with certainty, the attacker might also
possess knowledge with varying degrees of uncertainty. For in-
stance, the attacker might know that sexes in the input dataset are
distributed with a slight bias towards females. In other words, the
attacker might know nothing besides the structure of input records,
might know detailed public statistics about records, or might even
already know some, or most, of the records. Analysing with respect
to varying degrees of informedness enables the data controller to
assess how attacker knowledge affects privacy risk.
Granularity. A quality of the disclosure program, this dimension
represents the extent of which data has been distorted, or reduced
in resolution, during disclosure. For instance, in Fig. 1b, the disclo-
sure program drops identifying attributes, whereas in Fig. 2, the
disclosure program furthermore makes values more coarse. The
disclosure program can also add random noise, as in the personality
example. Analysing with respect to varying degrees of granular-
ity enables the data controller to evaluate the effect of different

anonymisation approaches, to assess which approach strikes the
desired balance between privacy and utility.

Queries. To further aid the data controller, we highlight three known
[16, 30], relevant types of disclosure risk, represented by queries.
Identity disclosure. Can an attacker identify precisely which
record belongs to a data subject? For instance, in Fig. 1b, the attacker
can identify which row belongs to Alice (the first row). This is the
most severe disclosure; if the attacker pinpoints Alice’s record, then
the attacker learns all of Alice’s attributes in the disclosed dataset.
Attribute disclosure. Does the attacker learn the value of an at-
tribute of a data subject (without necessarily knowing which record
belongs to said data subject)? For instance, in Fig. 2, while the
attacker cannot pinpoint which of the rows belong to Alice, the at-
tacker learns the diagnosis since all candidate rows are diagnosed ill.
Suppose, for instance, that the input dataset furthermore contained
a street address, which is preserved by the disclosure program.
Then the attacker does not learn Alice’s street address exactly (but
rather, reduces it to two possible addresses).
Quantitative attribute disclosure.Does the attacker change their
belief about the value of an attribute of a data subject? With belief
being (un)certainty of knowledge, we think of these as probabilities.
For instance, consider a variation of the input data in Fig. 2, where
Carol and Grace’s record are not present. The disclosed table then
does not contain the ⟨2300, F, Y, healthy⟩ rows. Suppose that 2%
of the general population is ill, and that this is known by the at-
tacker prior to disclosure. Suppose further that the attacker knows
nothing about Alice (not even her name) except that her record
is in the input dataset. Then, upon seeing the disclosed dataset,
the attacker’s belief that Alice is ill becomes 2/3—a huge increase.
This is the least severe disclosure of the three; the attacker neither
pinpoints Alice’s record, nor learns an attribute with certainty.

Scenarios. Each choice along each of the three dimensions gives
rise to a scenario, to be analysed for disclosure risk using the above
queries. This is summarised in Fig. 3. Here,𝐷 , 𝐼 , and𝐺 are the record
types, attackers, and disclosure programs considered by the data
controller. Large sets yield many scenarios, each of which needs to
be analysed with the three queries. In the following, we show how
to perform these analyses semi-automatically using Privug.

4 METHOD (PRIVUG)

To reason about privacy risks stemming from the use of an anonymi-
sation algorithm, we use Privug [18]. Privug semi-automates the
process of quantifying risk. We briefly recall the Privug method
here, and refer the reader to [18] for further details.
In Privug, we define attacker knowledge as a probabilistic model,
and use Bayesian inference to reason about what the attacker learns.
Probabilistic model. A probabilistic model describes a stochastic
phenomenon in terms of random variables and their relationships.
We express our probabilistic models in a programming language.
Probabilistic programming is the use of programming languages
for probabilistic modelling and reasoning. We use Figaro [19], a
probabilistic programming language embedded in Scala. We can
e.g. write val x = Uniform(0,10) to specify that 𝑥 ∼ Uni(0, 10),
define 𝑦 in terms of 𝑥 , define a distribution over datasets, etc.
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The steps of Privug (see Figure 4) are divided in two phases.

Modeling Phase. First, a data controller defines the scenario as a
probabilistic model. The model is created in three steps:
(1) Prior. Define the attacker’s knowledge about the input of the
program before observing the output. This is modelled as a distribu-
tion over (input) datasets. This model is very general. With it, we
can model how much the attacker knows—with varying degrees
of certainty—about the size of the dataset, which values attributes
can take, which records are in the dataset, and dependencies be-
tween all of these. In Sect. 5.1 we give two priors on COVID-19
infection rates for the Danish population: an uninformed attacker
making reasonable guesses (uniform), and an attacker informed
about publicly-released statistics on the matter (covid19).
(2) Disclosure program. Define the probabilistic version of the
anonymisation program. The probabilistic version maps a distri-
bution over inputs to a distribution over outputs. We invoke it on
the prior to compute the attacker’s prediction of the output of the
anonymisation program. The probabilistic version is trivially ob-
tained from the original anonymisation program, usually by simply
updating its type signature. In Sect. 5.2 we show the probabilistic
version of two anonymisation programs: one that drops a column
(attr_r), and one that reduces granularity of data (attr_g).
(3) Observation. Condition the program outputs. This asserts ev-
idence that the attacker has after observing the output of the
anonymisation program. This is required for some types of analysis.
In Sect. 5.3, for quantitative attribute disclosure, we assert that 𝑘
records in the output share a distinguished record’s age group.

Analysis Phase. The data controller then computes & analyzes the
knowledge that the attacker obtains after disclosure. In two steps:
(4) Posterior. Use Bayesian inference to compute the knowledge of
the attacker after observing the output, i.e., posterior distribution. Fi-
garo includes several inference algorithms to estimate the posterior
distribution automatically. We use Importance Sampling (IS) [22].
Intuitively, IS estimates the posterior by repeatedly generating
sample datasets according to the prior, and running the disclosure
program on each of the samples to estimate the distribution of
output datasets. If observations are defined, IS rejects samples that
do not satisfy the observation. For our analyses, we generate 5000
samples. This number of samples has been shown to provide a good
estimation for the type of programs we analyse here [18].
(5) Posterior Analysis. Query the prior and posterior. By doing so,
the data controller can analyse what the attacker learns about the
input from the output. All statistically defined queries and leakage
measures can, in principle, be used [18]. In Sect. 6, we show and
evaluate the result of issuing the disclosure queries from Sect. 5.3.

5 DEMONSTRATION: SETUP

In our demonstration of our framework, we evaluate the privacy
risk of two anonymisation programs intended to protect the privacy
of the individuals in a COVID-19 dataset. Consider a data analyst
responsible for releasing COVID-19 data (of Danish citizens). The
non-anonymised dataset contains an identification number for each
data subject, the COVID-19 information (a binary diagnosis: “ill”
or “healthy”), and demographic data, namely, birthday, age, zip

code and sex. The analyst wishes to assess the privacy risks of
two anonymisation methods: only removing the identifier, or fur-
thermore decreasing the granularity of attributes (generalise). In
particular, the analyst is interested in three types of analyses: i) de-
termine the probability that an attacker uniquely identifies a record
in the dataset (identity disclosure); ii) determine the probability that
an attacker learns the diagnosis (attribute disclosure); and iii) deter-
mine how certain an attacker is about the diagnosis (quantitative
attribute disclosure). The analyst will do this in the presence of two
attackers: a uniform prior, and a prior that is informed with publicly
available demographic data and COVID-19 data from Denmark.

This scenario is the same as in the health example in Sect. 2. How-
ever, our experiment differs in three crucial ways from Sweeney’s
work [26]. First, we consider COVID-19 infection rates in Denmark,
whereas Sweeney considered hospital records disclosed by the GIC
in Massachusetts. Second, we assess the privacy risk of anonymisa-
tion programs, not the vulnerability of a given dataset. We do not
need the original dataset—in fact, we do not possess it. Instead, we
create Bayesian models of what the attacker might know about the
input data. Third, instead of looking for a linking [26] or homogene-
ity [14] attack on a dataset, we analyse anonymisation programs
broadly, against attackers with varying degrees of informedness.

We refer to the distinguished record that the attacker is attempt-
ing to infer information about (Alice) as the victim.

5.1 Priors (informedness, distinctness)

We investigate two different priors built with the attributes de-
scribed above. The uniform prior assumes a uniform distribution of
all the demographic attributes, modeling a complete lack of knowl-
edge of how these attributes can be distributed in the datasets. This
prior corresponds, for instance, to the situation at the beginning
of the COVID-19 pandemic when governments did not publish
infection rates yet. The COVID-19 prior takes into consideration
the actual distribution of the demographics as well as COVID-19
infections in May 2020 among the Danish population, based on
published statistical data, thus modelling a stronger attacker that
makes use of publicly available data. In this prior, the probability
of a person being ill depends on the person’s age and sex.

Both priors assume the dataset has a fixed size, and that records
are independent from one another. We do not consider knowledge
e.g. of the form "if Bob is in the dataset, then so is Carol", or "if
everyone is male, then the dataset is small" (modellable in Privug).

uniform. In the uniform prior, the attributes of sex, birthday, age
and zip codes are uniformly distributed. More specifically, birth-
days are uniformly distributed from a range of 0 to 364 denoting
the 365 days in a year. (For the sake of simplicity, we ignore leap
years in our experiment.) Age is defined in a similar way and is
uniformly distributed from a range of 0 to 112. Furthermore, names
are uniformly distributed from a list of 54 names. As for zip codes,
around 250 different zip codes are uniformly distributed. Diagnosis
has a probability of being ill at 0.2, i.e. a Bernoulli distribution. This
is a (uneducated) guess, which is independent of demographics.

covid19. In the COVID-19 prior, distributions are defined from real-
life, publicly-available demographics data on the Danish population.
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Figure 5: Distribution of age and COVID-19 infection rates in Denmark (from publicly-available sources).

For the distribution on age and sex, we use data from Statbank [5]
maintained by Statistics Denmark, the central authority on statis-
tics on Danish society. The data is a mapping from ages (0 to 111
years), to the share of people with that age living in Denmark in
the first quarter of 2020. Figure 5 (left) shows the distribution. For
sex, the data is almost evenly distributed between female and male
in Denmark; 51 percent female, and 49 percent male. The distri-
bution on age depends on gender; there are more elderly females
than there are elderly males, and there are more young males than
there are young females. For the distribution on diagnosis, we use
(freely available) data [6] from Statista, a German private company
specialising in market and consumer data. This data consists of the
number COVID-19 cases as of October 6, 2020, by age (grouped in
intervals of 10 years) and sex. In Denmark, females have a higher
infection rate than males in all age groups, save for 60-70 and 70-80
years. Zip codes and birthdays remain uniformly distributed.

Data. Figure 5a shows the distribution over age and sex in Denmark.
For instance, out of all males, ~0.011 of them are 0 years old, and out
of all females, ~0.010 of them are 0 years old. This corresponds to
two categorical distributions (for females & males resp.). Figure 5b
shows the infection probability for each age interval in Denmark.
For instance looking at the first column, the share of the Danish
population, who are under the age of 9, female and are infected
with COVID-19 is 0,0023. That is, there is a probability of 0,23 % of
being infected with COVID-19, if you are female under age of 9.

Implementation. Figure 9 shows the specification of our two pri-
ors in Figaro. The function VariableSizeArray(size,... defines a
probability distribution over datasets w/ 500 rows (size ∼ Con(500),
a constant distribution). Intuitively, it defines how to sample a
dataset, in terms of how to sample a record. In Fig. 9a (uniform),
the attributes in each row are distributed as described above. In
particular, Flip is a Bernoulli distribution on Booleans, and If
branches on the Boolean to map it to a diagnosis. In Figure 9b

(covid19), names, zip code and birthdays are distributed the same
way as in uniform. However, sex is now a Bernoulli distribution,
informed by demographics data from the Danish population. Simi-
larly, which distribution over ages to draw from when sampling a
record depends on the sampled sex (distAge), and which distribu-
tion over diagnosis to draw from depends on the sampled sex and
age (distIll). These functions distAge and distIll are learned
from the data given in Fig. 5, described above.

Victim record. In both priors, we inject a distinguished record—the
victim—that the attacker is attempting to infer information about.
Her name is Alice, she’s born on February 13, lives in zip code
2300, and has diagnosis "ill". However, for her age, we consider all
possible ages in the Danish population, i.e., from 0 to 112.

We do this to analyse the privacy risk of all possible age groups
in the Danish population, and to be able to find out the more vul-
nerable age groups. With this, we model the distinctness dimension;
by performing the analysis for each of the age groups, we consider
records in the dataset of all kinds of distinctness. Injecting this
record ensures the attacker’s victim is included in the dataset. We
remark that not injecting this record would not change the results
of our analysis. Rather, the absence of this record may reduce the ac-
curacy of our results. The sampling process would generate datasets
without the victim record that are not relevant in our experiment.

5.2 Disclosure programs (granularity)

In order to test the impact of different anonymisation techniques on
the outputs of our risk estimation, we include some of these tech-
niques in our experiments. Namely, we consider attribute removal
(attr_r) and attribute generalisation (attr_g), described below.

Attribute removal (attr_r). The first anonymisation program drops
the name column from each record. The resulting dataset has high
utility, since all other attributes are left intact. The probabilistic ver-
sion, attr_r, is given in Fig. 10a. It takes a distribution over datasets
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as input, and produces a distribution over datasets (with names
removed) as output. In Figaro, Element[T] is a distribution over
T. Thus, ContainerElement[I,T] is a distribution over containers
of T, indexed by I. Likewise, in FixedSizeArrayElement[T], the
index of the container (a fixed-size array) is always Int. The origi-
nal (non-probabilisic) version of attr_r is the same as attr_r, but
with the element types replaces with List. It is thus quite easy for
a data analyst to obtain attr_r from an anonymization program.

Attribute generalisation (attr_g). The second anonymisation pro-
gram, in addition to dropping the name column, furthermore re-
duces granularity of data. The resulting dataset is less vulnerable
to a linking attack, at the cost of some utility. The probabilistic
version, attr_g, is given in Fig. 10b. We generalise three attributes:
zip code, birthday, and age, using (rather simple) generalisation
functions zG, bG and aG, respectively, given in Fig. 11. Concretely,
zip codes are divided into four bins, birthdays into 12 bins (month),
and ages into five bins with approximately twenty years in each.

5.3 Posterior analysis (disclosure queries)

To analyse privacy risks, we consider three types of disclosure,
in decreasing order of severity. The first type, identity disclosure,
estimates the risk that an adversary can identify a record in the
anonymised dataset that belongs to a specific data subject—a link-
ing attack. The second type, attribute disclosure, considers the risks
of an adversary learning the diagnosis of a data subject, without
necessarily identifying their record in the dataset—a homogeneity
attack. The third type, quantitative attribute disclosure, furthermore
considers the change of beliefs of the adversary about the proba-
bility of a particular data subject being sick based on the released
dataset. The disclosures queries are explained in more details below.

Identity disclosure. For quantifying identity disclosure risks, similar
to the original Sweeney reidentification, we look at whether the
victim is uniquely identified by a given set of attributes—i.e., quasi-
identifier analysis. To this end, we infer a distribution over the
number of records that share the given set of victim attributes.

Let “#(𝑝)” be the random variable denoting the number of records
satisfying predicate 𝑝 . Predicates are defined on output records, i.e.
tuples of the form (𝑧, 𝑏, 𝑠, 𝑎, 𝑑). Suppose, now, that we conduct a
quasi-identifier analysis for the singleton set of attributes, age. We
are then estimating the distribution 𝑃 (#(𝑎 = AGE)), that is, the
distribution of the random variable denoting the number of records
in the output dataset with the victim’s age (AGE).

Attribute disclosure. To quantify attribute disclosure risk, we look
at the probability that, in a given dataset, all of the records with
the same quasi-identifier as the victim, have the same diagnosis.
When all said records have the same diagnosis, we will have learned
the victim’s diagnosis, despite being (perhaps) unable to determine
exactly which row in the input belongs to the victim.

Let (𝑧𝑛, 𝑏𝑛, 𝑠𝑛, 𝑎𝑛, 𝑑𝑛) denote the 𝑛th record in the output dataset.
In case of the age quasi-identifier, the probability that we then
estimate is 𝑃 (∀𝑛 ∈ (1, 𝑁 ) . 𝑎𝑛 = AGE =⇒ 𝑑𝑛 = Ill), where 𝑁 is
the total number of records in the output dataset. In other words:
the probability that each record in the dataset matching the victim’s
age, is ill. By changing the left-hand side of the implication, we
obtain probabilities for other quasi-identifiers.

Quantitative attribute disclosure. Here we measure the attacker’s
(un)certainty of the diagnosis. We consider how the adversary
answers the question “What is the probability of the victim being
infected with COVID-19?” given the demographic attributes of the
victim as well as the dataset after anonymisation.

More precisely, assuming there is some number 𝑘 of records
sharing the victim’s age, we look at the distribution over the num-
ber of those records that are ill. In other words, the distribu-
tion 𝑃 (#(𝑎 = AGE ∧ 𝑑 = 𝐼𝑙𝑙) | #(𝑎 = AGE) = 𝑘). For example,
𝑃 (#(𝑎 = AGE ∧ 𝑑 = 𝐼𝑙𝑙) = 2 | #(𝑎 = AGE) = 10) gives the probabil-
ity of the attacker learning the victim diagnosis with certainty
2/10 = 0.2, i.e., two out of ten people with the victim’s age are ill.

6 DEMONSTRATION: RESULTS

We analyse how each dimension affects disclosure risk. To this end,
we run each query on each scenario, and compare the results along
each dimension (cf. Fig. 3). For the sake of brevity, for identity
disclosure and quantitative attribute disclosure, we opt to show
only query result for the age attribute, and, for attr_g, to only show
results of generalising age. Results of queries and generalisations
for other attribute combinations (i.e. those listed in the x-axis of the
in lower plots in Fig. 7), can be found in our public repository [21].

6.1 Identity disclosure analysis

For each scenario, we infer a distribution over the number of records
that have the same age as the victim. Figure 6 shows the results. The
goal is to evaluate how each dimension affects identity disclosure
risk—i.e., the extent of which the victim is uniquely identifiable—and
determine what age group is more vulnerable to identity disclosure
risks. To this end, we first compare how changes along a dimension
affect the distribution (i.e., its mode and variance).

Informedness. Informing the prior increases the mode for ages 0-70,
and decreases the mode for ages ≥ 80. This is specially pronounced
for ages ≥ 80 when using attr_g for anonymisation. The variance
of the distributions decreases for people in the age groups ≥ 80,
meaning that most of the probability is concentrated at the mode.

Granularity. Generalising attributes changes the support of the dis-
tributions: for attr_r is ca. (0, 25) whereas for attr_g is ca. (50, 175)
(except for the covid19 prior). This change also increases the vari-
ance of the distributions. Generalising attributes increases the mode
of the distributions, by a factor of ~20 for age groups 0-70 and up
to a factor of 30 for ≥ 80. These results indicate that increasing
granularity notably decreases identity disclosure risks.

Distinctness. Increasing distinctness does not significantly modify
the mode of the distributions of age groups 0-70, but notably de-
creases the mode for ≥ 80. The variance of the distributions is not
affected for age groups 0-70, but decreases for ≥ 80 and covid19
prior. Note that, for covid19 prior, attr_r anonymisation and the
age group ≥ 80, the probability is concentrated in low values (con-
cretely values < 2); indicating a high risk of re-identification.

Findings. From this analysis, we present the following findings.
For age groups 0-70, uniform constitutes a worst-case analysis

for identity disclosure. This is because themode of uniform is lower
than that of covid19 in Fig. 6; fewer people share the victim’s age
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in uniform, making the victim more identifiable (i.e. higher risk)
with uniform. Further, the probability that the victim is uniquely
identifiable is (near) zero, indicating that age groups 0-70 are not at
risk of being identified based on their age. In Fig. 6, the uniform
peak is 5, meaning 5/500 = 1/100 people match the age of the victim
(slightly fewer than what Fig. 5 says about the Danish population).

For age groups ≥ 80, however, the opposite holds; using uniform
leads to a profound underestimation of risk. This is because the
mode of covid19 is lower than the mode of uniform. In the last
column of attr_g in Fig. 6, the covid19 mode at ca. 24 is much
smaller than the uniform mode at ca. 145, and the covid19 mode
for in the other age groups. Worse, in attr_r and covid19 prior,
the age groups ≥ 90 are very likely unique (> 50% probability). This
means that people in these age groups are at a high risk of being
identified based on their age when data is anonymised with attr_r.

6.2 Attribute disclosure analysis

For each scenario, we infer the probability that every record, shar-
ing a given set of attributes with the victim, is ill. Figure 7 shows
the results. We consider combinations of age, birthday, zip code,
and sex, shown on the x-axis on the bottom plots. For granularity,
we consider removal of name (“attr_r(name)” in Fig. 7), general-
isation of age (“attr_g(age)”), and generalisation of age, zip and
birthday (“attr_g(age,zip,day)”). The goal is to evaluate how each
dimension affects attribute (i.e. diagnosis) disclosure risk—the ex-
tent of which the victim’s diagnosis can be inferred with certainty
by the attacker—and determine what age group is more vulnerable
to attribute disclosure. We do this by first comparing how changes
along a dimension affect the inferred probabilities.

Queries. Singleton attribute sets (age-row) pose a near-zero disclo-
sure risk for age groups 0-79. However, for age groups ≥ 80 and
covid19 prior, we see an exponential growth in disclosure risk,
with age groups ≥ 90 having over 90% risk of an attacker learning
the victims’ diagnosis. Increasing the attribute set increases the
disclosure risk. This is because the larger the attribute set, the fewer
records there will be that match those attributes with the victim; the
victim is more likely to be uniquely identified by the attribute com-
bination. Adding zip or birthday greatly increases the risk (birthday
slightly more), whereas adding sex barely increases it. For instance,
in the case of attr_r, for attribute set age, zip and sex, disclosure
risk is ~100% irrespective of distinctness and informedness. The
same holds for age, zip, and birthday, for attr_r and attr_g(age).

Informedness. Informing the prior, for age groups 0-79, decreases
the probability for each query and each granularity. Informing the
prior, for age groups ≥ 80, increases the probability for each query
and each granularity. There are several cases where this increase
is especially profound: i) when using attr_r and attribute sets
age and age & sex, and ii) when we generalise age, zip & day for
attribute sets age, zip & day and age, zip, day & sex.

Granularity. Generalising attributes decreases the probability for all
scenarios, except for the attribute sets {age, zip, day} and {age, zip,
day, sex} for which the probability remains the same when compar-
ing “attr_r” and “attr_g” plots. For age groups 0-79, when we gener-
alise age, risk for attribute set age & zip decreases from ⟨98%, 98%⟩
(uniform prior, covid19 prior) to ⟨71%, 60%⟩. For age groups ≥ 80,
however, the risk decreases from ⟨98%, 98%⟩ to ⟨58%, 89%⟩. Note
the small decrease for covid19. Disclosure risk does decrease dra-
matically if we furthermore generalise birthday and zip. For age
groups 0-79, the highest disclosure risk for covid19 is 45% and 52%
for uniform. For age groups ≥ 80, the risks are greatly reduced;
however, the highest disclosure risk for covid19 is still 75%.

Distinctness. Increasing distinctness decreases mildly the risks for
age groups ≥ 80 for uniform prior. However, doing so increases the
risk for covid19 for most queries (except of course for queries that
already had ~100% probability). For instance, for attribute set {age,
zip, day, sex} (last column), for generalisation of age, zip & birthday
(“attr_g(age,zip,day)”), for uniform, the risk decreases from 52% to
40%, whereas for covid19, the risk doubles from 40% to 80%.

Findings. From this analysis, we present the following findings.
We observe the same effect of distinctness on the uniform prior,

that we found during identity disclosure analysis. For age groups 0-
79, uniform is aworst-case analysis for attribute disclosure analysis.
This is seen by comparing plots vertically in Fig. 7; values in bottom
plots are less than those in the top plots. For age group ≥ 80, the
opposite holds; uniform leads to an underestimation of risk.

Furthermore, for the group ≥ 80 and covid19, attr_g is inef-
fective. However, for age groups 0-79, attr_g offers low but better
privacy protection (ca. 40% attribute disclosure risk). Our results
show the importance of generalising these attributes, but also indi-
cate that these generalisation mechanisms may be insufficient.

With these results, data controllers make better, informed de-
cisions on disclosing data, or can inform people in different age
groups of risk of disclosing their data (and seek their consent).
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6.3 Quantitative attribute disclosure analysis

For each scenario, we infer a distribution, over the number of those
records that are ill, with the condition (observation) that 𝑎 records
have the same age as the victim. Figure 8 shows the result. The goal
is to evaluate how each dimension affects quantitative attribute
disclosure risk, i.e. the extent of which the attacker learns some-
thing about the probability that the victim is ill (i.e., how certain
the attacker is that the victim is ill). Further, we compare how
probabilities differ before and after the observation, by comparing
what changes along a dimension does to the attacker certainty on
whether the victim is ill.

Choice of 𝑎. For several distributions in Fig. 8, we picked 𝑎 to be a
value that is roughly equally probable for uniform and covid19
in the corresponding plot in Fig. 6 and has probability ≥ 0 in both
distributions. Note that there is no value 𝑎 meeting these conditions
across all age groups. Consequently, we have selected two illustra-
tive type of records: i) a record with age = 32 which we refer to
as ordinary (people in this age are well represented in the Danish

population, cf. Fig. 5a), and ii) a record with age = 90 which we refer
to as outlier (people in this age are underrepresented in the Danish
population). Furthermore, since there exists no equiprobable value
for the age group ≥ 80 (outlier) when generalising age (last column
in Fig. 7), we pick the most likely outcome for each prior. As a result,
we cannot draw conclusions from informing the prior in Fig. 8d,
as the histograms are not comparable along that dimension. These
choices are for the sake of presentation, they are not a limitation
of our framework. Distributions for any choice of 𝑎 and age group
can be analyzed using the program in our public repository [21]. In
Fig. 8, the values of the 𝑥 axis represent the portion of the 𝑎 records
that share the victim’s age, that are ill. In Fig. 8a, 33% represents
0.33 ∗ 6 = 2, i.e. the probability that 2 out of the 6 records are ill.

Certainty increase. We compute how much the certainty of the
attacker (of victim being ill) increases after making an observation.

First, what was the certainty prior to observation? For uniform,
prior certainty is 20%. For covid19, it is 0.7% for ordinary, and 0.77%
for outlier (cf. column 30-39 resp. 90-200 in Fig. 5b).

Next, what is the certainty after observation? We see this by
looking at the mode of each of the eight histograms in Fig. 8. In
Fig. 8a in covid19, the mode is 17% (i.e. it is most probable that
0.17∗6 = 1 out of 𝑎 = 6 are ill). Thus, after observation, 17% becomes
the new certainty of whether the victim is ill in that scenario.

Finally, we compute the ratio of the two, to discover how much
the certainty has increased (Table 1). For the attr_g-uniform sce-
narios, certainty does not increase; it remains at 20%. In all other
scenarios, certainty increases, by varying amounts. For instance, in
the ordinary-attr_r-uniform scenario, certainty increases slightly
(by a factor of 1.65), whereas in the outlier-attr_r-covid19 sce-
nario, certainty increases enormously (by a factor of 42.86).

We investigate how changes along dimensions affects the attacker’s
certainty.We do this by comparing increases in Table 1.We compare
certainties after observation across scenarios, and we compare how
much certainty increased upon making the observation. Since the
values of 𝑎 differ in the plots, we are unable to draw conclusions
from comparisons along the distinctness dimension.
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distinctness granularity informedness prior mode increase ratio

ordinary attr_r uniform 20.00% 33% 13.00% 1.65

ordinary attr_r covid19 0.70% 17% 16.30% 24.29

ordinary attr_g uniform 20.00% 20% 0.00 % 1.00

ordinary attr_g covid19 0.70% 1% 0.30 % 1.43

outlier attr_r uniform 20.00% 33% 13.00% 1.65

outlier attr_r covid19 0.77% 33% 32.23% 42.86

outlier attr_g uniform 20.00% 20% 0.00% 1.00

outlier attr_g covid19 0.77% 4% 3.23% 5.19

Table 1: Increase in illness certainty after observation.

Informedness. Informing the prior decreases the attacker’s certainty.
The certainty decreases more for ordinary than for outlier. This can
be seen by comparing mode values of rows 1 & 2, 3 & 4, etc.; for
ordinary-attr_r, certainty decreases from 33% to 17%, whereas for
outlier-attr_r, certainty does not decrease (33% cf. 33%).

If we instead consider how much certainty increases, we get a
different picture. For the informed prior, the attacker’s certainty
increases proportionally more. This increase is profound for attr_r,
but slight for attr_g. This can be seen by comparing increases (or
ratios) of 1 & 2, 3 & 4, etc.; for outlier-attr_r, the certainty increase
is 32.23% (a profound factor 42.86 increase) cf. 13.00% (a meager
factor 1.65 increase), whereas for outlier-attr_g, the certainty in-
crease is 3.23% (a factor 5.19 increase) cf. 0.00% (no increase). The
increase is not significantly different for outlier compared to or-
dinary. The largest such difference is ordinary-attr_r compared
to outlier-attr_r; in the former, certainty increases from 13.00%
(factor 1.65) to 16.3% (factor 24.29), whereas in the latter, certainty
increases from 13.00% (factor 1.65) to 32.23% (factor 42.86).

Granularity. Generalising attributes reduces the attacker’s certainty.
For covid19, this reduction is profound, whereas for uniform, it is
slight. This can be seen by comparing mode values of rows 1 & 3, 2
& 4, etc.; for ordinary-covid19, certainty reduces from 17% to 1%,
whereas for ordinary-uniform, certainty reduces from 33% to 20%.

If we instead consider howmuch certainty increases, we get a sim-
ilar picture. For generalised attributes, the attacker’s certainty de-
creases proportionally more. This decrease is profound for uniform,
but slight for covid19. This can be seen by comparing increases
(or ratios) of 1 & 3, 2 & 4, etc.; for outlier-covid19, the certainty
increase is 3.23% (a factor 5.19 increase) cf. 32.23% (a profound
factor 42.86 increase), whereas for outlier-uniform, the certainty
increase is 0.00% (no increase) cf. 13.00% (factor 1.65 increase).

Findings. From this analysis, we present the following findings.
Informing the prior decreases the attacker’s certainty. However,

for the informed prior, the attacker learns proportionally more than
for the uninformed prior. This nuance is crucial; in some cases, a
data controller cares about the attacker’s prediction of the victim’s
illness, whereas in other cases, a data controller may care about
how much information the attacker learns.

Generalising attributes reduces the attacker’s certainty. Likewise,
for generalised attributes, the attacker learns proportionally less
than for removed attributes. For uniform, generalising attributes
reduces what the attacker learns to 0, whereas for covid19, doing
so reduces what the attacker learns from a lot to a little.

7 RELATEDWORK

In [18], Pardo et. al. introduced Privug and evaluated its accuracy,
scalability and applicability for a wide range programs (e.g. differen-
tial privacy [7] and 𝑘-anonymity [26]). Our main novelty cf. [18] is
the conceptual framework. In Privug, the result of analysis depends
on the prior. While expressive and fine-grained, great care must be
exercised when choosing a prior during risk analysis (it must model
a realistic attacker). Our conceptual framework exists to help the
data controller navigate the problem space—the data, the attackers,
and the mechanisms—to then organise approaches for solving the
(risk assessment) problem. While motivated by [18], our framework
is independent of Privug (see Sect. 1). Finally, no previous work
evaluates how attacker knowledge affects privacy risk in our level
of detail (see findings Sect. 6); [18] only evaluates informedness
(not distinctness & granularity). Though [18] introduced Sweeney’s
experiment using Privug (the authors study attribute removal and
𝑘-anonymity on a uniform prior), our paper presents significant
novelties. First, we consider uniform and covid19 priors. As we
have shown, covid19 has revealed insights not detected in uniform.
Second, we have extended the structure of the dataset to include
the age attribute—this was required as the attribute is present in
the COVID-19 dataset. Finally, we study attribute generalisation.

Other tools and methods to analyse re-identification risks hav
been proposed in the last decade, see [20] and references therein.
Most of these tools can be used to perform all (or a subset of)
the analyses we study here (cf. Sect. 5.3). The main difference be-
tween these tools and the experiment in this paper is that these
tools evaluate re-identification risks on concrete datasets, as op-
posed to re-identification risks on anonymisation algorithms. We
remark also that Privug, can be used in the absence of a concrete
dataset (e.g., our uniform prior), which makes it possible to analyse
anonymisation algorithms before real accurate data is available.
This is especially important in our experiment, as accurate COVID-
19 data was available only a few months after the pandemic started.

In [23], Rocher et. al. use a probabilistic model to evaluate re-
identification in anonymised datasets (removing identifiers as in
attr_r) that contain only a fraction of the records of the complete
dataset. Since datasets are incomplete, the authors use publicly
available demographic data to assess re-identification risks (identity
disclosure in our paper). The goal of the model is to estimate the risk
of identity disclosure given a set of demographic attributes. Instead,
we focus on evaluating different anonymisation programs (attr_r
and attr_g); [23] does not support this. We have further studied
two more privacy metrics: attribute disclosure and quantitative
attribute disclosure. However, our attacker model is more limited;
we assess privacy risks on a pre-defined record (the victim), and
assume that the attacker knows that the victim is included in the
dataset. The attacker model in [23] extrapolates to any member to
the population, and makes no assumptions about the presence of
the victim’s record in the dataset.

8 CONCLUSION

In this paper, we presented a multi-dimensional conceptual frame-
work for assessing privacy risks in the presence prior knowledge
about data, as well as a systematic method of conducting the anal-
ysis using Privug. We have demonstrated the effect of attacker
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knowledge on different types of privacy risks and on different
anonymisation programs, in a health data privacy setting. The
demonstration illustrates the process that data controllers may fol-
low to perform privacy risk analysis on anonymisation programs,
and refine their results by using publicly available data. We have
focused on two anonymisation programs working on COVID-19
infection data: direct identifier removal and attribute generalisa-
tion. We have studied three common types of privacy risks: identity
disclosure, attribute disclosure, and quantitative attribute disclo-
sure. We have studied two priors (attacker knowledge). A uniform
prior modelling an attacker with no side-knowledge, and a covid19
prior which includes side-knowledge about COVID-19 infections
and demographics of Danish citizens. We have identified the most
vulnerable age groups in the Danish population.

Our framework makes it easier for data controllers to explore
privacy risks in health care systems (or similar), thus enabling them
to make informed decisions when anonoymising data.
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A DEMONSTRATION: IMPLEMENTATION

1 VariableSizeArray( size, i =>
2 for {
3 n <- Uniform(names:_*)
4 z <- Uniform(zips:_*)
5 b <- Uniform(0, 364)
6 s <- Uniform(Male, Female)
7 a <- Uniform(0,112)
8 d <- If(Flip(0.2),
9 Ill, Healthy)
10 } yield (n, z, b, s, a, d))

(a) uniform

1 VariableSizeArray( size, i =>
2 for {
3 n <- Uniform(names:_*)
4 z <- Uniform(zips:_*)
5 b <- Uniform(0, 364)
6 s <- If(Flip(0.49),
7 Male, Female) //DK
8 a <- distAge(s) //DK
9 d <- distIll(s,a) //DK
10 } yield (n, z, b, s, a, d))

(b) covid19

Figure 9: Priors (attacker knowledge)

1 def attr_r (
2 rs: FixedSizeArrayElement[(Name,Zip,BDay,Sex,Age,Diagnosis)]
3 ) : ContainerElement[Int,(Zip,BDay,Sex,Age,Diagnosis)]
4 = rs.map { case (n,z,b,s,a,d) => (z,b,s,a,d) }

(a) Attribute Removal

1 def attr_g (
2 rs: FixedSizeArrayElement[(Name,Zip,BDay,Sex,Age,Diagnosis)]
3 ) : ContainerElement[Int,(Zip,BDay,Sex,Age,Diagnosis)]
4 = rs.map { case (n,z,b,s,a,d) => (zG(z),bG(b),s,aG(a),d) }

(b) Attribute Generalisation

Figure 10: Anonymisation Programs

1 def zG (z: Zip ) : Zip = ( (z - 1000) min 3000) / 1000
2 def bG (b: BDay) : BDay = (b min 330) / 30
3 def aG (a: Age ) : Age = (a min 80) / 20

Figure 11: Auxiliary functions of attr_g
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